Físicos do Fermilab (Fermi National Accelerator Laboratory) em Chicago nos EUA, anunciaram a descoberta de um sinal suspeito em seus dados, que pode ser prova da existência de uma nova partícula elementar ou, mesmo, de uma nova força da natureza.
© Fermilab (gráfico da distribuição de massa)
Os resultados, caso se sustentem, poderão representar um espetacular último adeus para o Tevatron, que já foi um dos mais potentes aceleradores de partículas do mundo, mas que deverá ser desativado em definitivo até setembro, quando termina a verba do Fermilab para operá-lo.
Uma possível explicação para o sinal misterioso é que seja prova de uma nova e inesperada versão do bóson de Higgs, uma partícula buscada há tempos. Essa é uma partícula elementar hipotética que, de acordo com a teoria dominante conhecida como Modelo Padrão, é responsável por dotar outras partículas elementares com massa.
Outra explicação é que seja evidência de uma nova força da natureza, em adição à gravidade, ao eletromagnetismo e às duas forças nucleares, a forte e a fraca que já conhecemos, e que se manifestaria apenas em distâncias muito curtas, como as do interior do núcleo atômico.
Qualquer uma dessas possibilidades poderá abalar o que vinha passando como sabedoria convencional na física nas últimas décadas, ou pode ser que haja algo desconhecido na física convencional.
O físico Giovanni Punzi, que atua no grupo que fez os experimentos, está entusiamado e cauteloso devido a importância da descoberta.
Uma possível explicação para o sinal misterioso é que seja prova de uma nova e inesperada versão do bóson de Higgs, uma partícula buscada há tempos. Essa é uma partícula elementar hipotética que, de acordo com a teoria dominante conhecida como Modelo Padrão, é responsável por dotar outras partículas elementares com massa.
Outra explicação é que seja evidência de uma nova força da natureza, em adição à gravidade, ao eletromagnetismo e às duas forças nucleares, a forte e a fraca que já conhecemos, e que se manifestaria apenas em distâncias muito curtas, como as do interior do núcleo atômico.
Qualquer uma dessas possibilidades poderá abalar o que vinha passando como sabedoria convencional na física nas últimas décadas, ou pode ser que haja algo desconhecido na física convencional.
O físico Giovanni Punzi, que atua no grupo que fez os experimentos, está entusiamado e cauteloso devido a importância da descoberta.
Físicos de fora do círculo do Fermilab dizem ver os resultados, que vêm sendo discutidos informalmente há meses, com uma mistura de espanto e ceticismo, pois há possibilidade do sinal obtido conter um efeito espúrio, gerado pela forma como os dados foram analisados.
O importante é que se essa e outras anomalias recentemente informadas pelo Tevatron forem reais, então o LHC (Grande Colisor de Hádrons) ou o DZero poderão comprovar tal fato dentro de pouco tempo.
O importante é que se essa e outras anomalias recentemente informadas pelo Tevatron forem reais, então o LHC (Grande Colisor de Hádrons) ou o DZero poderão comprovar tal fato dentro de pouco tempo.
© Fermilab (pico de massa da suposta partícula)
A linha azul indica o sinal observado numa distribuição Gaussiana, cujo pico de massa estimada é de 140 GeV/c2.
Os autores dos experimentos estimam que há uma chance de menos de um quarto de 1% de que o sinal seja uma flutuação estatística. A presente análise baseia-se em 4,3 femtobarns inverso dos dados, com significância 3,2 sigma - o que significa que há 1 chance em 1375 do pico possa ser resultado de uma flutuação estatística aleatória - que não é suficiente para que se reivindique a autoria de uma nova descoberta, que teve ter o valor de 5 sigma.
O Tevatron vem colidindo feixes de prótons e de seus opostos, antiprótons, acelerados a energias de 1 trilhão de eV (elétron-volts), por mais de duas décadas, em busca de novas forças e partículas. O sinal apareceu na análise de cerca de 10.000 colisões registradas no Fermilab.
Os cientistas descobriram que, em cerca de 250 casos além do esperado, o que surgiu das colisões foram jatos de partículas leves, como elétrons, e uma pesada partícula portadora de força, o bóson W, uma partícula 87 vezes mais pesada do que um próton.
A energia total dos jatos do produto do decaimento da suposta partícula desconhecida tem massa equivalente a 140 GeV/c2.
Este não poderia ser o bóson de Higgs do Modelo Padrão, concluem Ponzi e seus colegas, porque a previsão é de que o Higgs decaia em partículas muito mais pesadas. Além disso, a taxa de produção dessas partículas misteriosas era 300 vezes maior que a esperada para o Higgs.
O resultado foi fortalecido por novos cálculos de interações entre quarks.
Os cientistas descobriram que, em cerca de 250 casos além do esperado, o que surgiu das colisões foram jatos de partículas leves, como elétrons, e uma pesada partícula portadora de força, o bóson W, uma partícula 87 vezes mais pesada do que um próton.
A energia total dos jatos do produto do decaimento da suposta partícula desconhecida tem massa equivalente a 140 GeV/c2.
Este não poderia ser o bóson de Higgs do Modelo Padrão, concluem Ponzi e seus colegas, porque a previsão é de que o Higgs decaia em partículas muito mais pesadas. Além disso, a taxa de produção dessas partículas misteriosas era 300 vezes maior que a esperada para o Higgs.
O resultado foi fortalecido por novos cálculos de interações entre quarks.
O artigo será publicado na revista Physical Review Letters.
Fonte: Fermilab
Nenhum comentário:
Postar um comentário