Mostrando postagens com marcador Óptica. Mostrar todas as postagens
Mostrando postagens com marcador Óptica. Mostrar todas as postagens

segunda-feira, 3 de fevereiro de 2014

O mistério das bolas de fogo

Relâmpagos bola tem sido um dos fenômenos naturais mais misteriosos durante séculos, em parte porque é tão raro e transitório e, portanto, difícil de investigar.

relãmpago bola

© J. Cen, P. Yuan e S. Xue (relãmpago bola)

O raio bola é o ponto branco na extremidade esquerda, e seu espectro de forma irregular é a banda colorida. Mas uma observação fortuita durante experimentos de campo na China para estudar relâmpago comum, forneceu o que parece ser a primeira medição do espectro de emissão de raios globulares. Os dados sugerem que a bola brilhante foi composta de elementos de solo, de acordo com uma teoria popular.

Relâmpagos bola normalmente aparece durante as tempestades como um brilho, que vão desde o tamanho de uma bola de golfe a vários metros de diâmetro, que flutua no ar por entre um segundo e dezenas de segundos. Há muitos relatos históricos de tais "bolas de fogo" ferindo ou até mesmo matando pessoas e provocando incêndio em edifícios, conduzindo às explicações sobrenaturais.

As teorias científicas de relâmpagos bola abundam, com diferentes graus de plausibilidade. As bolas de plasma brilhantes foram criadas artificialmente pela passagem de micro-ondas intensas através do ar ou por descargas elétricas subaquáticas. Mas tais experiências de laboratório não podem ostentar qualquer relação com a formação de raios bola no meio ambiente, que se sabe muito pouco, uma vez que não houve quase nenhum dado sólido.

Uma teoria popular é que o raio bola é causado quando um raio atinge o solo e evapora alguns dos silicatos minerais no solo. O carbono no solo retira os silicatos de oxigênio através de reações químicas, criando um gás de átomos de silício energético. Os átomos se recombinam para formar nanopartículas ou filamentos que, embora ainda flutuando no ar, reagem com o oxigênio, liberando calor e emitindo o brilho. Se é assim, deve-se esperar para ver as linhas de emissão atômica de silício e outros elementos do solo no espectro.

Isso é o que Ping Yuan e colaboradores da Northwest Normal University em Lanzhou, na China, agora relatam. Eles haviam montado espectrômetros no remoto Planalto Qinghai, no noroeste da China para investigar relâmpago comum, que é frequente nesta região. Durante uma tempestade de fim de noite em julho de 2012, eles viram um raio bola aparecer apenas depois de um raio de cerca de 900 metros do seu aparelho e foram capazes de gravar um espectro e imagens de vídeo de alta velocidade da bola .

O brilho registrado tinha cerca de 5 metros de diâmetro, o tamanho real da bola era muito menor e ele mudou de branco para o vermelho durante o tempo que durou. Embora a escuridão impediu os pesquisadores de estimar a altitude da bola, eles viram que a bola deslocou horizontalmente por cerca de 10 metros e subiu cerca de 3 metros. Yuan diz que esta é a primeira vez que um raio bola foi visto sendo criado por um relâmpago nuvem-solo.

Os pesquisadores descobriram que o espectro continha várias linhas de emissão de silício, ferro e cálcio todos os elementos que deverão ser abundante no solo. Seria de esperar também a presença de alumínio, dada a sua abundância em minerais do solo. Mas não foi confirmado, pois não há linhas de emissão de átomos de alumínio neutro dentro da faixa espectral do instrumento (comprimentos de onda de 400 a 1.000 nanômetros). A equipe também usou seus dados de vídeo para traçar a intensidade do raio bola e diâmetro aparente à medida que varia com o tempo, até a escala de tempo de milissegundos. Os pesquisadores planejam simular as condições de observação e reproduzí-la em laboratório.

Fonte: Physical Review Letters

quinta-feira, 9 de janeiro de 2014

Ultrapassando os limites da difração

Microscópios ópticos são amplamente utilizados em todas as áreas da ciência para ampliar a imagem de pequenos objetos.

imagem de nanoestrutura

© Tung-Yu Su/NTU (imagem de nanoestrutura)

No entanto, devido ao seu design e os limites de difração, os menores recursos que microscópios convencionais podem imagear são cerca de metade do comprimento de onda da luz que eles usam.

O físico Shi-Wei Chu, da Universidade Nacional da Tailândia, e colegas relataram uma nova técnica que supera esse limite de resolução e pode efetuar imagens de nanoestruturas, da ordem de 70 nanômetros de tamanho, inferior a um oitavo do comprimento de onda da luz visível usada em sua configuração.

O grupo montou um microscópio óptico comum com um laser e utilizou uma amostra contendo nanopartículas de ouro. O comprimento de onda do laser foi escolhido de modo que ficasse em ressonância com as partículas plasmônicas. Como consequência, a luz laser apresentou particularmente forte dispersão. Ao ajustar a intensidade do laser, os pesquisadores foram capazes de alcançar, pela primeira vez, um regime em que a luz dispersou a partir de uma partícula isolada quando foi saturada. Com técnicas de processamento de imagem apropriados, tal comportamento de saturação pode ser explorada para proporcionar imagens mais nítidas das nanoestruturas plasmônicas.

Enquanto este método apenas funciona para as nanopartículas de ouro, partículas podem ser incorporadas seletivamente de outros materiais. Embora outras técnicas recentemente demonstradas, principalmente com base em microscopia de fluorescência, permitem resolução comparável ou até melhor, este método com nanopartículas de ouro tem uma vantagem importante: as amostras podem ser fotografadas várias vezes sem danos e sem perda de intensidade de espalhamento que, nos regimes baseados em fluorescência, inevitavelmente ocorrem por causa do branqueamento das moléculas fluorescentes.

Fonte: Physical Review Letters

sexta-feira, 10 de fevereiro de 2012

Efeito deixa átomo de ferro transparente

Cientistas conseguiram realizar um experimento pelo qual demonstraram que o núcleo atômico pode se tornar transparente.

princípio da transparência induzida eletromagneticamente

© DESY (princípio da transparência induzida eletromagneticamente)

A novidade, do grupo liderado por Ralf Röhlsberger no Deutsches Elektronen-Synchrotron (DESY), em Hamburgo, na Alemanha, é considerada importante para o desenvolvimento de computadores quânticos, que poderão substituir os atuais com velocidades de processamento hoje impossíveis de serem atingidas.

A técnica, que utiliza o efeito da transparência induzida eletromagneticamente, permite com que materiais opacos possam se tornar transparentes para a luz em certos comprimentos de onda como o raio X. A técnica permite o controle da transmissão e da velocidade da luz e envolve interferência quântica.

O experimento consitui de duas finas camadas de ferro-57 no interior de uma cavidade óptica, um espaço formado por dois espelhos paralelos de platina, que forçam os raios X a ficar indo para a frente e para trás múltiplas vezes.

As duas camadas de átomos de ferro-57, cada uma com aproximadamente três nanômetros de espessura, são mantidas em uma posição muito precisa entre os dois espelhos de platina usando camadas de carbono, que é transparente para os raios X do comprimento de onda utilizado no experimento.

O sanduíche inteiro, medindo 50 nanômetros de espessura, recebe um feixe extremamente fino de raios X, disparado em um ângulo muito baixo. No interior da cavidade óptica a luz é refletida para frente e para trás várias vezes, gerando uma onda estacionária, uma ressonância.

O ferro se torna quase transparente para os raios-X quando o comprimento de onda da luz e a distância entre as duas camadas de ferro ficam em uma proporção precisa; uma camada de ferro deve estar exatamente no mínimo da ressonância de luz, e a outra exatamente no máximo.

Quando as camadas são deslocadas no interior da cavidade óptica o sistema torna-se imediatamente não transparente, o que permite o controle deste fenômeno, denominado efeito quântico óptico, causado pela interação dos átomos no interior das camadas de ferro.

Ao contrário do que ocorre nos átomos individuais, os átomos dentro de uma cavidade óptica absorvem e irradiam a luz em sincronia. Graças à geometria precisa deste experimento, suas oscilações cancelam-se mutuamente, o que faz com que o ferro se torne transparente.

A ilustração acima ajuda a entender o fenômeno, mostrando múltiplas imagens das duas camadas de ferro-57: a interação dos raios X com as duas camadas leva a um estado de superposição quântica do ferro e de suas imagens nos espelhos, que faz com que os átomos de ferro pareçam transparentes.

Em contraste com os experimentos anteriores com a transparência induzida eletromagneticamente, apenas alguns poucos fótons são necessários para gerar este efeito por intermédio dos raios X.

Pelo efeito da transparência induzida eletromagneticamente, com um laser intenso em uma determinada frequência é possível fazer com que um material não transparente se torne transparente para a luz de outra frequência. Esse efeito é promovido pela interação complexa da luz com a eletrosfera, onde estão os elétrons.

No laboratório de luz síncrotron do DESY, o grupo demonstrou que esse efeito também existe em raio X quando os raios são direcionados para o núcleo atômico do isótopo de ferro 57 (pelo método chamado de espectroscopia de Mössbauer), que compreende 2% do ferro que ocorre naturalmente no planeta.

“O resultado de alcançar a transparência no núcleo atômico é, em suma, o efeito da transparência induzida eletromagneticamente sobre o núcleo. Certamente que ainda há um longo caminho a percorrer até que o primeiro computador com luz quântica se torne realidade. Entretanto, com esse efeito fomos capazes de realizar uma classe completamente nova de experimentos de óptica quântica de alta sensibilidade”, disse Röhlsberger.

Segundo o cientista, a nova fonte de laser de raios X XFEL, que está sendo construída em Hamburgo, representa uma grande oportunidade de se conseguir controlar este método através dos raios X.

O grupo alemão também demonstrou outro paralelo do efeito da transparência induzida eletromagneticamente; onde a luz presa em uma cavidade óptica viaja a uma velocidade de apenas alguns metros por segundo. Normalmente a velocidade é a da luz, de cerca de 300 mil quilômetros por segundo.

Fonte: Nature

sexta-feira, 9 de setembro de 2011

Isolando pedaços de luz

Ondas possuem picos e vales, sejam elas as ondas do mar ou as ondas eletromagnéticas.
pulsos no ultravioleta, visível e infravemelho próximo
© Thorsten Naeser (pulsos no ultravioleta, visível e infravemelho)
Quando duas ondas, com diferentes comprimentos de onda, se sobrepõem precisamente, esses padrões de picos e vales se tornam mais complexos e menos repetitivos.
Eventualmente, na sequência da interação, não haverá mais nenhum ciclo, apenas um ponto isolado, apontando em alguma direção específica.
Mas Adrian Wirth e seus colegas do Instituto Max Planck de Óptica Quântica, na Alemanha, acabam de confinar um feixe de luz de grande espectro em pulsos que são mais curtos do que um único ciclo óptico.
A luz original é um feixe de laser branco, que contém comprimentos de onda que vão do infravermelho próximo ao ultravioleta, passando pelo espectro visível, uma espécie de arco-íris.
Esse laser branco é dirigido para o "sintetizador luminoso", o novo aparato criado pelos pesquisadores. De forma similar a um sintetizador de som, que superpõe as ondas sonoras de diferentes frequências para criar sons e ritmos diferentes, o sintetizador de luz superpõe ondas ópticas de diferentes cores e fases para criar vários formatos de onda. Os feixes são visualizados com a ajuda de vapor de nitrogênio.
protótipo do sintetizador de campo luminoso
© Thorsten Naeser (protótipo do sintetizador de campo luminoso)
O resultado é um pacote único de luz, mais curto do que uma onda completa da luz.
Essa "luz sem ciclo" compacta todas as interações entre os diversos comprimentos de onda em um único ponto luminoso.
Essa aplicação cria deverá viabilizar o estudo da dinâmica dos elétrons de uma forma que não era possível até agora, porque essas alterações eletrônicas acontecem em escalas temporais muito pequenas.
Isso permitirá, por exemplo, que os cientistas acompanhem os detalhes das reações químicas, hoje basicamente restritas ao "antes e depois" da própria reação.
A produção de transientes ópticos de sub-ciclo abre novas perspectivas para dirigir o movimento dos elétrons em escala atômica com a força elétrica da luz, assim como para conduzir complexas dinâmicas nas camadas de valência de moléculas.
Essa ferramenta será crucial para o desenvolvimento da chamada fotossíntese artificial, que depende da compreensão detalhada das reações químicas que os fótons do Sol induzem nas plantas, que possibilitará criar uma nova fonte de energia limpa, de alta eficiência e totalmente renovável.
No primeiro experimento realizado usando esse processo, os cientistas arrancaram o elétron da camada mais externa de um átomo do gás criptônio. O processo levou 700 attossegundos - o processo mais rápido já induzido opticamente até hoje.
Fonte: Science

segunda-feira, 5 de setembro de 2011

As leis da óptica são alteradas

Cientistas desenvolveram um novo método para controlar a luz usando a nanotecnologia. E, devido à descoberta, as leis da óptica foram literalmente mudadas.
espelho com nanoantenas
© Eliza Grinnell e Nanfang Yu (espelho com nanoantenas)
A técnica poderá ajudar os cientistas a projetar novas lentes planas e polarizadores, como os utilizados em câmeras e telas LCD.
Trata-se de um fenômeno óptico bizarro, que desafiou as leis da reflexão e refração, permitindo controlar a luz para que ela reflita e refrate de uma forma que não ocorre na natureza.
A nova técnica, chamada descontinuidade de fase, levou a uma reformulação das leis matemáticas que predizem o caminho de um raio de luz refletindo de uma superfície ou viajando de um meio para outro; por exemplo, do ar para o vidro.
"Usando superfícies construídas artificialmente, nós criamos os efeitos de uma casa dos espelhos de um parque de diversões em uma superfície plana," diz Federico Capasso, da Universidade de Harvard, coordenador da equipe. "Nossa descoberta leva a óptica a um novo território e abre as portas para desenvolvimentos instigantes na tecnologia fotônica."
nanoantenas alterando a direção da luz
 © Nanfang Yu (nanoantenas alterando a direção da luz)
Em seu experimento, o pesquisador Nanfang Yu e seus colegas criaram uma fina película metálica repleta de nanoantenas ópticas, que jogam a luz para frente e para trás sobre a superfície de uma pastilha de silício.
Projetando um feixe de luz sobre essa superfície nanoestruturada, as antenas induzem mudanças abruptas nas ondas de luz, fazendo-as dobrar e refletir na direção "errada", em comparação à reflexão e à refração comuns.
Até hoje, esses efeitos só haviam sido obtidos com metamateriais.
A técnica, baseada na forma como a luz viaja através de diferentes meios, cria uma interface artificial, que "engana" a luz, fazendo-a se comportar de uma forma totalmente não-usual.
As leis da óptica preveem os ângulos de reflexão e refração com base no ângulo de incidência da luz e nas propriedades dos dois meios.
Ao estudar o comportamento da luz nas suas superfícies nanoestruturadas, os pesquisadores perceberam que as equações atuais eram insuficientes para descrever os fenômenos bizarros que eles estavam observando no laboratório.
Para obter novas leis, mais gerais, eles tiveram que considerar que, se a fronteira entre dois meios tiver padronagens especiais, ela na verdade funciona como um terceiro meio de propagação.
Isto significa que, ao contrário de um sistema óptico convencional, a interface artificial entre o ar e o silício induz uma abrupta mudança de fase nas cristas das ondas de luz que a atravessa.
Cada nanoantena funciona como um minúsculo ressonador, que aprisiona a luz, segurando sua energia por um determinado período de tempo e, a seguir, liberando-a.
Um gradiente de diferentes tipos de ressonadores ao longo de toda a superfície de silício pode efetivamente curvar a luz antes mesmo que ela comece a se propagar através do novo meio.
O fenômeno resultante quebra as antigas leis da óptica, criando feixes de luz que refletem e refratam de forma arbitrária, dependendo do padrão da superfície.
A fim de generalizar as leis de reflexão e de refração nos livros-texto, os pesquisadores adicionaram um novo termo para as equações, representando o gradiente de alteração de fase induzida pela interface.
Se não existir tal interface artificial, basta zerar o gradiente que as novas leis produzem os mesmos resultados que suas versões já bem conhecidas.
Fonte: Science

domingo, 10 de abril de 2011

Imagens holográficas obtidas com plasmons

Um grupo de pesquisadores da Universidade de Osaka, no Japão, conseguiu uma maneira nova de projetar hologramas que não mudam a cor com o movimento do observador, por meio do uso de plasmons.
plasmons criam hologramas
 © Science (plasmons criam hologramas)
Os plasmons são oscilações de elétrons que ocorrem em nuvens de elétrons ou plasma e já eram utilizados para polarizar diferentes tons de cor nos vidros de janelas do período medieval, através de partículas de ouro dispersas no material, que rebrilhavam durante as diferentes fases da luz solar.
Os pesquisadores da universidade japonesa conseguiram aproveitar a forma como os raios de luz disparam as ondas de elétrons, por meio de uma máquina, sobre uma superfície de metal. Os plasmons sempre emitem luzes coloridas, visíveis somente a poucos nanômetros da superfície do metal. A pesquisa do físico Satoshi Kawata demonstra como o grupo conseguiu projetar a luz sobre uma superfície rugosa e fazer saltarem cores incríveis na chapa.
"Um holograma convencional muda de cor, se você muda o ângulo; nosso holograma mostra a cor natural em todos os ângulos que você observar", afirmou Kawata.
A experiência, embora apresente imagens muito interessantes, não parece ter aplicação prática efetiva. O pesquisador espera que haja interesse em usar esta tecnologia para produzir grandes telas em 3D.
Fonte: Science

sexta-feira, 28 de janeiro de 2011

Lente de Luneburg é criada

Físicos do Reino Unido criaram uma lente de Luneburg, uma lente capaz de focalizar a luz em todas as direções, no interior de uma pastilha de silício.
lente de luneburg
©  Instituto Niels Bohr (ilustração do feixe de elétrons no grafite)
A maioria das lentes tem aberrações, o que significa que sua capacidade de focalizar a luz se deteriora quando a luz incidente está fora do eixo.
Mas na lente de Luneburg, proposta teoricamente há mais de 60 anos, a focalização funciona sempre da mesma forma, com a mesma qualidade, não importando de onde a luz esteja vindo.
O componente deverá ter aplicações em optoeletrônica, na chamada óptica de Fourier, usada pela indústria de telecomunicações para a redução de ruídos nas transmissões e para a compressão de dados.
Mas criar uma lente de Luneburg se mostrou algo complicado. Essas lentes exigem que o índice de refração, a propriedade que determina como a luz é desviada por uma lente, varie ao longo do dispositivo, com um máximo de √2 (aproximadamente 1,4) maior do que o mínimo.
Com tecnologia atual é impossível dopar um material com impurezas para atingir esse nível de contraste do índice de refração.
Outros cientistas tentaram fazer versões aproximadas da lente de Luneburg no passado, mas nunca alcançaram o resultado esperado.
Agora, Ulf Leonhardt e seus colegas da Universidade de St. Andrews criaram uma lente Luneburg para a luz infravermelha usando um guia de ondas de silício.
"Acreditava-se ser impossível construir uma lente de Luneburg no espectro visível ou próximo dele, a um custo razoável", comentou Juan Miñano, da Universidade Politécnica de Madrid, que não estava envolvido com a pesquisa.
O dispositivo criado por Leonhardt e seus colegas é um pedaço de silício microscópico, com a forma de uma lente de contato, servindo de recheio para duas camadas grossas de polímero e sílica, tudo posto sobre um substrato.
Quando os pesquisadores disparam um feixe de luz com um comprimento de onda de 1.575 nanômetros rumo ao dispositivo, a luz cobre a interface entre o polímero e a sílica, até atingir a lente, onde fica fortemente confinada.
Na verdade, a geometria da lente cria um perfil de índice de refração efetivo que varia de 1,4 a 2,8, focando o feixe em um ponto com 3.770 nanômetros de diâmetro.
Para uma lente de Luneburg ideal, este ponto focal deveria ter a metade do comprimento de onda, ou cerca de 800 nanômetros, quase cinco vezes menor do que os cientistas obtiveram.
Leonhardt afirma que a discrepância se deve a limitações da óptica, e que um feixe de luz que abrangesse toda a lente, e não apenas uma parte dela, produziria uma resolução melhor.
Igor Smolyaninov, pesquisador da Universidade de Maryland, nos EUA, que também trabalha com novos tipos de lentes, acha que a lente de Luneburg baseada em um guia de ondas é um resultado importante.
Smolyaninov já aprisionou um arco-íris dentro de uma armadilha de espelhos e ajudou a criar a primeira camuflagem que torna um objeto realmente invisível.
A equipe de Xiang Zhang, da Universidade da Califórnia em Berkeley, apresentou uma lente de Luneburg capaz de focalizar plásmons de superfície, que são ondas de elétrons que surfam na superfície de metais.
Fonte: Nature Nanotechnology

quinta-feira, 30 de setembro de 2010

Objetos movidos por 1,5 m apenas com luz

Cientistas desenvolveram método para mover apenas com o uso de luz partículas por distâncias nunca conseguidas anteriormente. Foi usado um raio laser especialmente criado para a pesquisa.
raio laser movendo pequena partícula
© ANU (raio laser movendo pequena partícula)
Equipe do Centro de Física a Laser, da Universidade Nacional da Austrália, conseguiu mover partículas extremamente pequenas por 1,5 m usando apenas a força do raio laser. O tamanho das microesferas variava entre 60 e 100 micrometros.
Por 40 anos, cientistas usaram radiação de luz para mover e manipular pequenos objetos. Até agora, os movimentos eram restritos a pequenas escalas, por não mais que milhares de micrometros - e a maioria em líquidos. Manipulação óptica de partículas por grandes distâncias podem ter várias aplicações, como permitir o transporte de contêineres com substâncias perigosas sem a necessidade de toque.
O laser não funciona no vácuo, então seu uso é de grande importância na Terra, como na montagem de micro máquinas e componentes eletrônicos.
Fonte: Phys.Org

quinta-feira, 17 de junho de 2010

"Laser escuro" permite que dados digitais viajem mais longe

Fibras ópticas podem transportar dados digitais a distâncias muito maiores sem distorção se esses dados forem codificados em pulsos de escuridão em lugar de pulsos de luz. Agora Steven Cundiff e sua equipe na Universidade do Colorado, em Boulder, desenvolveram um equipamento chamado de "laser escuro".
laser escuro
© Optics Express (evolução do pulso de laser escuro)
Um laser tradicional pode enviar milhões de pulsos rápidos a cada segundo separados por intervalos escuros mais prolongados. O laser escuro inverte essa ordem: gera longos pulsos de luz separados por intervalos mais curtos de escuridão.
O equipamento possui um material que emite luz quando uma corrente elétrica o atravessa. A luz é rebatida diversas vezes dentro de uma câmara com espelhos.
Até aí o laser escuro é como um laser tradicional. A diferença no laser escuro é que um dos espelhos possui uma cobertura de material que absorve a luz.
Nesse arranjo, com luz na frequência certa, a câmara emite pulsos curtos caracterizados por uma ausência em vez de presença de luz. Os pulsos, produzidos a uma taxa de até 400 milhões por segundo, são 70% menos intensos que a luz de fundo.
Este não é o primeiro laser capaz de transmitir pulsos escuros. Han Zhang e sua equipe da Universidade Tecnológica de Nanyang, em Cingapura, construíram seu laser ano passado. Mas Zhang nota que o laser de Cundiff produz pulsos a uma taxa muito maior.
Jeremy Baumberg, da Universidade de Cambridge, ressalta que é possível há algum tempo gerar pulsos escuros usando equipamentos anexados a um laser padrão. O que torna o trabalho de Cundiff interessante, diz Baumberg, é que os pulsos de laser escuro são gerados espontaneamente.
Baumberg, no entanto, não sabe como o novo laser poderia ser usado. Como no caso do laser original, trata-se de uma solução procurando por um problema, diz.
O novo laser pode ser útil em comunicações ópticas a longas distâncias. Há limites na distância em que pulsos de luz podem viajar dentro de uma fibra óptica sem que ocorra distorção, pois diferentes comprimentos de onda movem-se a velocidades diferentes. Isso não seria um problema, para um pulso definido pela ausência de luz.
Fonte: Optics Express