Mostrando postagens com marcador Física Nuclear. Mostrar todas as postagens
Mostrando postagens com marcador Física Nuclear. Mostrar todas as postagens

domingo, 14 de fevereiro de 2016

A evolução da fusão nuclear

Cientistas do Hefei Institutes of Physical Science da Chinese Academy of Sciences (CASHIPS), na China, conseguiram alcançar temperaturas três vezes maiores que a do nosso Sol ao realizar uma fusão nuclear.

interior do Tokamak chinês

© CASHIPS (interior do Tokamak chinês)

O experimento durou 102 segundos e tornando a fusão nuclear artificial mais longa que já existiu no planeta. O feito representou um grande avanço na corrida para tornar realidade um dos maiores desafios científicos do século XXI: conseguir criar uma fonte de energia viável a partir da fusão nuclear, imitando o processo que acontece no Sol.

Utilizando o reator de fusão termonuclear Tokamak Superconductor Experimental Advanced (EAST), os pesquisadores elevaram a temperatura do hidrogênio para aproximadamente 50 milhões de graus Celsius (a temperatura do núcleo do Sol é cerca de 15 milhões de graus Celsius), transformando o gás hidrogênio em plasma.

O maior obstáculo da fusão para ser viável como fonte de energia é o confinamento do plasma durante tempo suficientemente longo. Esta foi a grande façanha dos chineses, que chegaram mais longe do que ninguém nesse aspecto.

"O processo foi conseguido através do aquecimento com plasma confinado por uma supercondução magnética," disse Li Ge, pesquisador do Hefei Institutes of Physical Science.

Conseguir uma fusão nuclear estável e controlada é uma das grandes ambições da comunidade científica internacional, uma vez que tem potencial como fonte de energia limpa e é um recurso quase inesgotável.

A novidade do experimento chinês, não está nessa alta temperatura alcançada, mas no tempo que conseguiram mantê-la; em dezembro de 2015, uma equipe do Instituto Max Planck, na Alemanha, conseguiu atingir 80 milhões de graus Celsius em um teste similar. No entanto, enquanto os cientistas alemães, e antes deles outros europeus, japoneses e americanos, consideraram um sucesso chegar a estas temperaturas em uma fração de segundo, os chineses mantiveram o processo durante um minuto e 42 segundos.

Controlar esta operação por tanto tempo demonstra uma evolução técnica que aproxima os pesquisadores da chegada de reatores nucleares de fusão capazes de imitar o processo que acontece no Sol de forma natural, gerando energia.

A fusão é uma reação química que consiste na união de dois átomos para formar um maior, liberando uma enorme quantidade de energia no processo, o mesmo utilizado, por exemplo, na bomba de hidrogênio. A energia obtida neste tipo de processo é mais potente que a realizada nas usinas nucleares, que efetuam fissão de átomos gerando átomos menores.

Para explorar a viabilidade da fusão de hidrogênio para a geração de energia uma aliança formada pelos Estados Unidos, União Europeia, China, Rússia, Japão, Índia e Coreia do Sul desenvolveram o projeto ITER (Reator Internacional Termonuclear Experimental), que está sendo construído no sul da França. O EAST chinês é uma espécie de versão em pequena escala do ITER, e os dados de seu último experimento serão disponibilizados aos parceiros internacionais que participam desse projeto, segundo anunciou a Academia de Ciências da China.

O próximo objetivo dos pesquisadores chineses é chegar aos 100 milhões de graus e preservá-los durante 1.000 segundos, mas o reator termonuclear terá que ser atualizado.

Fonte: Hefei Institutes of Physical Science

sexta-feira, 14 de fevereiro de 2014

Avanço nas pesquisas sobre fusão nuclear

Cientistas anunciaram esta semana um importante avanço na longa busca do desenvolvimento da fusão nuclear, o que para alguns representa o sonho de uma fonte de energia limpa e ilimitada.

cápsula que contém combustível para a fusão nuclear

© LLN (cápsula que contém combustível para a fusão nuclear)

Presente no Sol e em muitas outras estrelas, a fusão implica na liberação de energia por meio da união de núcleos atômicos, diferentemente da provocada pela fissão nuclear, princípio físico da bomba atômica e da energia nuclear usada atualmente nas usinas, que envolve a quebra do núcleo dos átomos.

Décadas de trabalho sobre a fusão tentaram superar um obstáculo gigantesco: a enorme quantidade de energia necessária para desencadear o processo. No entanto, experiências de laboratório, descritas atualmente por um grupo de cientistas nos Estados Unidos, permitiram fazer grandes avanços na superação desses obstáculos.

Os cientistas americanos afirmaram ter sido os primeiros a obter mais energia de uma reação de fusão do que a absorvida pelo combustível usado para provocá-la.

Eles fixaram 192 feixes de laser na direção de um ponto mais estreito do que a largura de um cabelo humano para gerar energia suficiente para comprimir uma minúscula cápsula de combustível a um tamanho 35 vezes menor que o original.

Com duração de menos de um bilionésimo de segundo, a reação liberou energia equivalente à armazenada em duas baterias AA (17 mil Joules) na última experiência realizada em novembro de 2013.

Apesar de modesta, a liberação de energia foi maior do que a energia absorvida pelo combustível, estimada entre 9 mil e 12 mil Joules.

"Isto é o mais próximo que se chegou" do sonho de gerar energia viável resultante de uma fusão, disse Omar Hurricane, chefe da equipe que realizou o estudo na estatal National Ignition Facility (NIF), da Califórnia.

A energia é dez vezes superior à alcançada anteriormente, embora haja alguns obstáculos. Não se trata de uma reação sustentada, o tão buscado momento de "ignição", e a pergunta sobre a eficiência energética, ou seja, a liberação de uma energia superior à consumida para lançar o processo, permanece sem resposta.

Neste caso, os feixes de laser liberaram 1,9 milhão de Joules de energia, o equivalente a uma pequena bateria de carro, dos quais só entre 9 mil e 12 mil Joules foram absorvidos pelo combustível.

"Só algo da ordem de 1% da energia que usamos com o laser termina no combustível, ou até menos", disse a co-autora do estudo, Debbie Callahan. "Há muito espaço para continuarmos avançando", prosseguiu.

O método precisa ser aperfeiçoado e o rendimento deve ser 100 vezes melhor "antes de que possamos chegar ao ponto de ignição", acrescentou Hurricane.

A ignição também requer auto-propagação, por meio da qual as primeiras partículas fundidas causam o calor e a pressão necessários para gerar outras, criando assim novas partículas e melhorando o rendimento.

Os últimos experimentos no NIF, um feito em setembro do ano passado e o outro em novembro, foram os primeiros a lançar provas de que as partículas deixam um pouco de energia atrás delas.

A fusão nuclear é o oposto da fissão, que apresenta como riscos a proliferação nuclear, assim como os rejeitos perigosos e duradouros.

Os núcleos de deutério e trítio, ambos isótopos obtidos a partir do hidrogênio, podem, ao contrário, se fundir para criar partículas mais pesadas.

Em teoria, a energia gerada através da fusão não resultaria em rejeitos perigosos nem contaminaria a atmosfera. Além disso, o combustível é encontrado com maior abundância: na água do mar, que cobre mais de dois terços do planeta.

O procedimento requer temperaturas extremas e pressões equivalentes às encontradas no nosso Sol e em outras estrelas ativas.

Para concretizar este objetivo, Hurricane e sua equipe dispararam seus raios laser contra um cilindro de ouro de dois milímetros de diâmetro, recoberto por dentro por uma camada congelada de combustível de deutério e trítio.

Os feixes de luz entraram através de buracos por um lado e se focaram como raios que impactaram a cobertura externa da cápsula e provocaram sua implosão, algo equivalente a reduzir uma bola de beisebol ao tamanho de uma ervilha.

O processo gera uma pressão 150 bilhões de vezes superior à exercida pela atmosfera terrestre e uma densidade de 2,5 a 3 vezes superior à do núcleo solar, disseram os cientistas. Segundo o cientista especializado Mark Herrmann, do Pulsed Power Sciences Center, de Albuquerque, trata-se de "um avanço significativo na pesquisa sobre a fusão".

Fonte: Nature

sábado, 24 de março de 2012

Nova imagem do núcleo do átomo

Um conceito errôneo é visualizar o átomo como sendo análogo a um sistema planetário, admitindo o núcleo, composto por prótons e nêutrons, como sendo algo estacionário, fisicamente delimitado.

nova imagem do núcleo atômico

© ANL (nova imagem do núcleo atômico)

Enquanto que há muito tempo sabemos que os elétrons são "nuvens de probabilidade" ao redor dos núcleos, devido à sua peculiaridade bipolar, podendo se comportar como partículas ou ondas.

Na década de 1980 descobriu-se que alguns núcleos atômicos de elementos leves, como hélio, lítio e berílio, não têm bordas externas definidas: eles possuem halos, partículas que se destacam além das bordas do núcleo, criando uma nuvem que envolve o núcleo. A imagem abaixo mostra uma ilustração do núcleo de berílio circundado por seu halo. Segundo medições realizadas por uma equipe alemã, o halo se estende a até 7 femtômetros (0,000000000000007 metros) do centro de massa do núcleo, cobrindo uma área três vezes maior do que a parte densa do núcleo.

núcleo de berílio circundado por seu halo

© Dirk Tiedemann/Uni-Mainz (núcleo de berílio rodeado por seu halo)

Agora, depois de realizar as observações mais precisas já feitas até hoje do halo nuclear, cientistas demonstraram que até um quarto dos núcleons (prótons e nêutrons) do núcleo denso de um átomo estão viajando continuamente a uma velocidade de até 25% da velocidade da luz.

"Nós geralmente imaginamos o núcleo como um arranjo fixo de partículas, quando na realidade há um monte de fatores acontecendo no nível subatômico que nós simplesmente não podemos ver com um microscópio," ressalta o físico John Arrington, do Laboratório Nacional Argonne (ANL), nos Estados Unidos.

Ele e seus colegas usaram grandes espectrômetros magnéticos para observar o núcleo de átomos de deutério, hélio, berílio e carbono.

O berílio ao contrário dos outros átomos possui dois aglomerados de núcleons, cada um parecido com um núcleo do átomo de hélio-4. Esses núcleons, por sua vez, estão associados a um nêutron adicional.

Isso desfaz completamente a figura do núcleo como uma esfera fisicamente delimitada, além de mostrar que o halo é mais complexo do que se imaginava.

Por causa dessa configuração complicada, o núcleo do berílio apresenta um número relativamente alto de colisões, apesar de ser um dos núcleos menos densos entre todos os elementos.

Os cientistas afirmam que esse efeito acelerador pode ser resultado de interações entre os quarks que formam os núcleons, sendo que cada próton e cada nêutron consiste de três quarks muito fortemente ligados.

Quando os núcleons se aproximam uns dos outros, as forças que unem os quarks podem ser perturbadas, alterando a estrutura dos prótons e dos nêutrons, possivelmente até mesmo formando partículas compostas pelos quarks de dois núcleos diferentes.

O próximo passo dos pesquisadores ao estudar este fenômeno será obter uma imagem da distribuição dos quarks quando os núcleons se aglutinam.

Fonte: Argonne National Laboratory

quinta-feira, 15 de março de 2012

Experimento em usina nuclear chinesa

Neutrinos são pequenas partículas esquivas. Apenas no final da década de 1990 foi descoberto que eles têm massa, após anos de indicações duvidosas nesse sentido.

detector de neutrino Daya Bay

© Roy Kaltschmidt (detector de neutrinos Daya Bay)

Podem oscilar entre três tipos, ou "sabores", mudando a identidade durante o trajeto. Talvez o que lhes tenha trazido mais fama é que foram acusados, no ano passado, de quebrarem a lei cósmica de viajar mais rápido que a luz (o júri ainda não deliberou, mas a absolvição parece iminente).
Agora, cientistas estão mais próximos de descobrir o modus operandi do neutrino. A colaboração de físicos possibilitou medir um dos descritores essenciais da mudança de comportamento, que troca o sabor do neutrino, um número chamado θ 13 (lê-se “teta um três”). Esse número, conhecido como ângulo de mistura, descreve a probabilidade de uma antipartícula de neutrino do elétron, o antineutrino do elétron, oscilar para outro sabor, percorrendo uma distância relativamente curta (cada um dos três sabores de neutrinos – do elétron, do tau e do múon – tem sua própria antipartícula parceira). Dois outros parâmetros de oscilação de neutrinos, ou ângulos de mistura, já foram medidos, mas o θ 13 é relativamente pequeno se comparado com os outros dois e provou ser mais difícil de definir.
Desde o ano passado, um grupo de físicos tenta medir o θ 13 rastreando antineutrinos emitidos por uma grande usina nuclear Chinesa. A colaboração do experimento do Reator de Neutrinos Daya Bay construiu seis detectores, alguns perto dos reatores e outros a mais de um quilômetro de distância, para acompanhar como antineutrinos do elétron se transformam em outros sabores ao viajar através do espaço. Já que os detectores são ajustados para identificar apenas antineutrinos do elétron, qualquer oscilação significa que os neutrinos não serão detectados, isto é, eles parecem desaparecer. Outros experimentos tomaram o rumo oposto, procurando o surgimento de neutrinos do elétron em um feixe que transporta outros tipos de neutrinos.
Em apenas dois meses de dados, o conjunto distante de detectores registrou mais de 10 mil visitas de antineutrinos do elétron. Isso, porém, corresponde a apenas 94% do quanto seria ingenuamente esperado por extrapolação a partir dos detectores mais próximos dos reatores nucleares. Isso significa que uma fração substancial oscilou para outro sabor em sua viagem relativamente curta. “O que vemos agora é que este desaparecimento (de antineutrinos do elétron) está em 6%”, afirma o físico de neutrinos Karsten Heeger, da Universidade de Wisconsin-Madison, membro da colaboração Daya Bay. “É um efeito bastante grande”. Heeger apresentou os resultados experimentais em 8 de março em um simpósio na Universidade Duke, e o grupo submeteu seu estudo para a Physical Review Letters.

Fonte: Scientific American Brasil

terça-feira, 23 de agosto de 2011

A fonte definitiva de energia

Em busca de uma alternativa para a matriz energética mundial, muitos cientistas acreditam que só a energia das estrelas pode representar um passo decisivo para a humanidade.
ilustração de um reator de fusão nuclear
© RSC (ilustração de um reator de fusão nuclear)
Às voltas com a sujeira e os riscos causados pela fissão nuclear, ainda debatendo se os biocombustíveis valem a pena ou não, o mundo se vê às voltas com uma matriz essencialmente baseada no petróleo e seus parentes próximos, o carvão e o gás natural.
Para achar uma saída desse beco, as duas únicas tecnologias com potencial disruptivo são a fotossíntese artificial e a fusão nuclear.
Os experimentos com folhas artificiais estão apenas começando. Mas o homem sonha em domar a fusão nuclear desde que Hans Bethe explicou de onde as estrelas tiravam tanta energia.
A primeira tentativa de produzir a fusão nuclear na Terra não é de boa lembrança: em 1º de Novembro de 1952, os Estados Unidos usaram uma bomba similar à usada em Hiroshima apenas para dar a ignição na primeira bomba de hidrogênio. Funcionou, mas a coisa se mostrou tão perigosamente descontrolada que o projeto foi deixado de lado.
O recorde mundial de fusão nuclear hoje pertence ao reator tokamak do JET (Joint European Torus), no Reino Unido. Com 15 metros de diâmetro e 12 metros de altura, ele consumiu 20 MW (megawatts) para produzir 16 MW - mas a fusão nuclear se sustentou por menos de 10 segundos.
Hoje, todos os esforços para bater esse recorde e gerar energia são pacíficos - ao menos os que se conhece. E os projetos de fusão nuclear não são mais exclusividade dos governos e suas universidades: já há empresas privadas trabalhando na área.
ITER
O maior desses esforços é o ITER, sigla em inglês de Reator Internacional Termonuclear Experimental, que começou a ser erguido em Cadarache, na França.
Com um investimento planejado de US$21 bilhões, o projeto pretende consumir 50 MW de energia para dar partida em uma produção de 500 MW. Em 2027, se tudo der certo.
O problema é que ninguém sabe se vai dar certo. Muitos físicos dizem que não vai funcionar. Outros afirmam que o ITER funcionará como um excelente laboratório de física, mas nunca será uma usina de geração de energia eficiente.
O ITER usará um reator do tipo tokamak, que usa um gigantesco campo magnético para confinar um plasma que deverá atingir uma temperatura de 45 milhões de graus Celsius para dar partida na fusão de deutério-trítio.
Se funcionar, um quilograma (kg) de combustível de fusão vai gerar tanta energia quanto 10 milhões de kg de carvão.
Outro experimento já atingiu 25 milhões de graus Celsius, ainda abaixo do ponto de partida da fusão. Mas os projetistas do ITER confiam em seus 18 gigantescos ímãs supercondutores, cada um pesando 360 toneladas, para confinar uma quantidade de plasma suficiente para chegar lá.
Ignitor
O Ignitor é um projeto conjunto entre a Itália e a Rússia, bem menos ambicioso que o ITER.
O Ignitor será na verdade uma versão ampliada do Alcator C-Mod, desenvolvido pela equipe do professor Bruno Coppi, do MIT.
O reator, que está sendo erguido nas proximidades de Moscou, terá aproximadamente o dobro do tamanho do Alcator, com uma câmara principal em forma de anel com 1,3 metro de diâmetro - a câmara do ITER terá 6,2 metros de diâmetro.
O Alcator não nasceu para gerar energia, mas como um laboratório para estudar as estrelas.
Ao longo dos anos, os cientistas foram aprimorando seus detalhes técnicos, a ponto de atingirem um estágio no qual eles acreditam ser viável usar a tecnologia para produzir temperaturas suficientes para iniciar a fusão nuclear.
Como estão trabalhando em uma área desconhecida, os cientistas parecem mais interessados em trocar experiências do que em competir. Evgeny Velikhov, responsável pelo lado russo do projeto, também é membro do conselho do ITER.
Mas o Dr. Coppi diz que, mesmo que o Ignitor nunca gere mais energia do que consumir, ainda assim a astrofísica terá muito a ganhar com o experimento.
Sterellator
Stellarator
© Max Planck Institute (Stellarator)
O tokamak não é o único caminho para tentar domar a fusão nuclear.
O projeto Wendelstein 7-X, do Instituto Max Planck, da Alemanha, está construindo um reator de fusão do tipo stellarator - ele será o maior do mundo desse tipo.
Um tokamak é alimentado por uma corrente de plasma. Essa corrente fornece uma parte do campo magnético responsável por isolar o próprio plasma das paredes do reator. O grande problema é evitar as "disrupções", as instabilidades do plasma circulante pelo torus.
Um reator do tipo stellarator não tem corrente, eliminando de pronto o problema das instabilidades do plasma. Esse tipo de reator tem um desenho esquisito, mas também tem seus próprios problemas, como uma tendência a perder energia.
Cada stellarator foge à sua própria maneira do tipo "clássico", fazendo modificações e otimizações que tentam coibir os defeitos o obter um funcionamento contínuo.
O Wendelstein 7-X terá 50 bobinas supercondutoras, medindo 3,5 metros de altura cada uma, para gerar o campo magnético primário. Para completar o sistema de contenção do plasma será usada uma camada adicional com 20 bobinas planares, colocadas sobre as primeiras, que terão o papel adicional de permitir o controle da intensidade do campo magnético.
O conjunto todo é contido dentro de uma estrutura de 16 metros de diâmetro. Uma usina de refrigeração fornecerá 5.000 Watts de hélio líquido para manter a supercondução dos fios que formam as bobinas.
O Wendelstein 7-X será um reator de pesquisa, sem intenção de produzir energia. Na verdade, a intenção é demonstrar a viabilidade da construção de uma usina de fusão nuclear usando um reator do tipo stellarator. Se tudo ocorrer segundo o cronograma, o reator deverá entrar em funcionamento em 2014.
Fusão nuclear com laser
O projeto europeu Hiper (sigla em inglês de Pesquisa de Energia Laser de Alta Potência) pretende atingir as altas temperaturas necessárias para iniciar a fusão nuclear usando um equipamento de raio laser do tamanho de um estádio de futebol.
Um laser de alta potência vai comprimir átomos de hidrogênio para conseguir uma densidade 30 vezes maior do que a do chumbo.
Um segundo laser vai aumentar a temperatura do hidrogênio comprimido acima dos 100 mihões de graus Celsius.
Nessas condições, os núcleos do hidrogênio deverão se fundir para formar hélio.
Iniciado em 2008, o Hiper é financiado pela Comissão Europeia e envolve 26 instituições de dez países.
Motor de fusão
Os cientistas da empresa privada Helion Energy são bem mais comedidos do que seus parceiros institucionais.
Seu reator de fusão nuclear é um equipamento cilíndrico de 16 metros de comprimento e pouco mais de um metro de diâmetro.
Chamado de "motor de fusão", o reator não usará supermagnetos supercondutores mantidos em temperaturas criogênicas: ele usará um processo conhecido como configuração de campo reverso.
Em vez de confinar o plasma em uma estrutura toroidal, como no tokamak, o motor de fusão vai acelerar duas pequenas bolas de plasma uma em direção à outra.
Manter o plasma isolado em um aparato linear é muito mais simples do que o formato toroidal, exigindo um campo magnético menos intenso e mais fácil de controlar. É por isso que o reator é tão menor do que seus concorrentes.
Se os cálculos estiverem corretos, a colisão deverá gerar calor suficiente para fundir os núcleos dos átomos, aquecê-los e iniciar a fusão de forma sustentada.
Como a fusão ocorre em um ponto determinado no espaço é mais fácil também recolher os nêutrons gerados. Os nêutrons são essenciais para gerar o combustível da fusão.
E, se eles escaparem, podem tornar radioativas as peças metálicas do equipamento com as quais entrarem em contato - isso acontecerá no ITER, que deverá trocar as partes internas do seu reator periodicamente.
O protótipo do motor de fusão atingiu uma temperatura de 25 milhões de graus Celsius, bem abaixo do necessário. Mas os cientistas calculam que a temperatura necessária será alcançada com um equipamento apenas três vezes maior.
A NASA e o Departamento de Defesa dos Estados Unidos já investiram US$5 milhões na empresa, que agora está procurando parceiros privados para levantar mais US$20 milhões, necessários para construir a versão final do seu motor de fusão.
Fusão geral
A empresa canadense General Fusion está usando uma outra abordagem para tentar obter a fusão nuclear sustentada.
A técnica chama-se fusão de plasma magnetizado e consiste em iniciar a fusão em um plasma comprimido de forma intensa e rápida no interior de uma esfera giratória de metal líquido.
O reator funciona em ciclos sequenciais, com cada compressão do plasma magnetizado produzindo um "disparo" de energia gerada pela fusão.
São quatro ciclos: criação do plasma de deutério e trítio, aprisionamento do plasma em um campo magnético, compressão do plasma magnetizado, gerando a fusão e, finalmente, captura do calor gerado pela fusão para uso em uma usina termoelétrica.
Os resultados ainda são modestos: segundo a empresa, o aparato produziu uma temperatura de 5 milhões de graus Celsius durante 1 microssegundo.
Mas a General Fusion tem mais dinheiro para construir versões maiores do seu reator: os US$30 milhões foram levantados entre investidores privados, entre os quais Jeff Bezos, da Amazon.
Fusão secreta
Há uma outra empresa privada na área, chamada Tri Alpha Energy, que não gosta de aparecer e nem divulga seus projetos, mas que aparentemente está usando um conceito criado pelos físicos Norman Rostoker e Hendrik Monkhorst.
A ideia é misturar hidrogênio e boro-11 em um plasma de alta temperatura para gerar a fusão.
O processo de confinamento usa a mesma configuração de campo reverso, mas aparentemente mantendo toda a energia de entrada dentro do reator - os elétrons do combustível seriam confinados eletrostaticamente e os íons seriam aprisionados magneticamente.
Os pesquisadores acreditam que, com o calor e a densidade adequadas, esses íons vão se fundir para liberar energia.
Recentemente circularam boatos de que a empresa teria levantado US$90 milhões, tendo entre seus investidores Paul Allen, cofundador da Microsoft. Mas as empresas de capital de risco apontadas nos boatos não listam a empresa em sua carteira de investimentos.
Em um artigo científico publicado em 2010, seus cientistas afirmam ter alcançado uma temperatura de 5 milhões de graus Celsius durante 2 milissegundos.
Já houve vários boatos sobre a iminência de um teste "no ano que vem", que ainda não aconteceu. Os mais otimistas opinam que uma versão comercial do reator Rostoker/Monkhorst - capaz de produzir mais energia do que consome - não sairá antes de 2020.
Fusão nuclear a frio
Há também propostas mais controversas para a fusão nuclear, embora não voltadas especificamente para a produção de energia.
A principal delas é a chamada fusão nuclear a frio, ou fusão de baixa energia, que mostra os indícios da fusão por meio dos nêutrons gerados no processo - pouquíssimos nêutrons, em comparação com os experimentos que pensam em gerar energia.
A ideia surgiu em 1989, quando Martin Fleishmann e Stanley Pons afirmaram ter verificado a fusão nuclear em uma célula eletrolítica. Mas nenhum outro grupo conseguiu reproduzir o experimento.
A esperança renasceu em 2009, quando Pamela Mosier-Boss e sua equipe modificaram ligeiramente a célula eletrolítica de Fleishmann e Pons e tiveram resultados animadores, ainda que frágeis demais para qualquer uso prático.
Mas a fusão nuclear a frio só voltou a ser levada a sério em 2010, quando a Sociedade Americana de Química promoveu um evento de dois dias exclusivamente para discutir o assunto. Desde o fiasco inicial, quem se atrevia a pesquisar na área preferia trabalhar em silêncio.
Foram mais 50 apresentações de experimentos que apresentaram resultados significativos, suficientes para colocar o assunto em pauta novamente. Mas ninguém sonha em usar a fusão a frio para geração de energia.
Fusão por cavitação
Pelo menos três grupos se envolveram em uma pretensa fusão nuclear em um equipamento de mesa, desde que Rusi Taleyarkhan e seus colegas do Laboratório Nacional Oak Ridge afirmaram ter conseguido iniciar a fusão pelo colapso de microbolhas.
Seth Putterman, da Universidade da Califórnia, fez uma demonstração semelhante em 2005, mas usando o aquecimento de um cristal em um ambiente de deutério. A produção de nêutrons, contudo, foi muito pequena, e os cientistas nunca chegaram a afirmar que a técnica seria útil para a geração de energia.
No mesmo ano, uma equipe da Universidade Purdue afirmou ter confirmado o experimento de Taleyarkhan, baseado na cavitação de microbolhas.
Contudo, depois da contestação de outros cientistas, a Universidade fez uma sindicância e concluiu que Yiban Xu e Adam Butt haviam falseado os resultados.
Fonte: Inovação Tecnológica

quinta-feira, 31 de março de 2011

Observada partícula rara no LHC

O acesso aos dados dos experimentos no LHC (Grande Colisor de Hádrons) do CERN (Centro Europeu para Pesquisas Nucleares), possibilitou a observação das raras partículas méson B por pesquisadores da Universidade de Siracusa.
simulação de colisão de partículas no LHCb
© CERN (simulação de colisão de partículas no LHCb)
Acredita-se que esta partícula, criada quando prótons se chocam entre si próximos à velocidade da luz, estava presente imediatamente depois do Big Bang. Os pesquisadores, liderados pelo físico Sheldon Stone, esperam encontrar a resposta para a questão sobre a relação da matéria e da antimatéria logo após o Big Bang e para o fato de encontrarmos hoje mais matéria no Universo. A matéria e a antimatéria existiam na mesma proporção logo após o evento que deu origem ao Universo.
A matéria é composta de átomos formados por cargas positivas chamadas prótons, cargas negativas chamadas elétrons e os nêutrons. Os prótons e os nêutrons, por sua vez, são constituídos por partículas menores conhecidas como quarks. Já a antimatéria é composta por antiprótons, pósitrons, antinêutrons e por consequência por antiquarks. Acredita-se que ambos deveriam ser regidos pelas leis da Física igualmente, mas não é isto que ocorre e os cientistas buscam a razão para isto.
A partículas méson B fazem parte de um subgrupo raro dos mésons compostos tanto por quark quanto antiquark. Estas partículas violam a chamada simetria CP (C de carga e P de paridade).
Como esta partícula era comum após o Big Bang e hoje é encontrado apenas em condições experimentais em aceleradores de partículas, como o LHC, e não na natureza, os cientistas acreditam que o seu papel na superação da matéria sobre a antimatéria no Universo tenha sido decisivo.
Fonte: Physics Letters B

quinta-feira, 16 de setembro de 2010

Aniquilação de matéria e antimatéria pode criar laser de raios gama

O positrônio é um átomo exótico, de vida extremamente curta, formado pela união de um elétron com sua antipartícula, o pósitron, sem um núcleo.
câmara de alto vácuo para criação de positrônio
© UC Riverside (câmara de alto vácuo para criação de positrônio)
Em 2005, físicos da Universidade da Califórnia criaram uma molécula de positrônio, uma substância completamente nova, também chamada de matéria artificial, porque ela essencialmente é formada por uma junção de matéria e antimatéria. O feito foi confirmado em 2007.
Agora, a mesma equipe conseguiu isolar pela primeira vez uma amostra de átomos de positrônio polarizados pelo spin. O spin é uma propriedade fundamental e intrínseca de um elétron, e se refere ao momento angular do elétron. Átomos polarizados pelo spin são átomos que estão todos no mesmo estado de spin.
Uma grande amostra de átomos de positrônio spin-polarizados (com mesmo estado de spin) é necessária para criar uma outra forma especial da matéria, chamada condensado de Bose-Einstein, onde bilhões de átomos entram em sintonia e se comportam como se fossem um gigantesco átomo individual.
Para obter este resultado a densidade dos átomos de positrônio foi elevada, propiciando aniquilamento parcial quando interagem entre si.
Os átomos de positrônio podem ser de dois tipos, quanto ao spin: up e down. Os átomos de positrônio só são aniquilados quando um tipo up se encontra com um tipo down. Dois átomos com o mesmo spin não se afetam.
Na colisão de matéria e antimatéria é gerado um disparo de raios gama. Esse gerador de raios gama pode ser a fonte de radiação necessária para criar um laser de raios gama e para produzir energia por fusão nuclear.
A eventual produção de um condensado de positrônio possibilitará compreender por que o universo é feito de matéria, e não de antimatéria ou simplesmente energia pura, além de auxiliar na mensuração da interação gravitacional da matéria com a antimatéria.
Fonte: Physical Review Letters

quarta-feira, 7 de julho de 2010

O raio do próton pode ter tamanho menor

Cientistas de um grupo internacional de pesquisas afirmara que um constituinte fundamental do universo visível, o próton, é menor do que se pensava anteriormente, segundo estudo publicado na revista científica Nature.
proton laser
© Paul Scherrer Institut (aparelho laser)
Medições revistas reduziram em 4% o raio da partícula que, embora não pareça muito, especialmente dado o tamanho infinitesimal do próton, em experimentos futuros pode representar um desafio a preceitos fundamentais da eletrodinâmica quântica (QED), a teoria de como a luz e a matéria interagem. Isto significa que o próton seria 0.00000000000003 milímetros menor.
O raio do próton apresentado na pesquisa é da ordem de 0,84 femtômetro. Experimentos mais antigos, no entanto, haviam fixado um valor mais próximo de 0,87. A diferença, embora pareça pequena, fica além das margens de erro estatístico e pode representar a primeira rachadura na couraça da QED, teoria que serviu de base para os cálculos realizados tanto na medição atual quanto nas anteriores.
Inicialmente, a equipe internacional de 32 cientistas, chefiada por Randolf Pohl, do Instituto Max Planck em Garching, Alemanha, só queria confirmar o que já se sabia e não derrubar conceitos.
Por décadas, os físicos de partículas usavam o átomo de hidrogênio como um parâmetro para medir o tamanho dos prótons, que são parte do núcleo atômico. A vantagem do hidrogênio é sua simplicidade incomparável: um elétron circunda um único próton.
Mas, se artigo estiver correto, esta unidade de medida esteve equivocada por uma margem pequena, porém crítica. "Nós não imaginávamos que haveria um abismo entre as medidas conhecidas do próton e as nossas próprias", diz o coautor do estudo, Paul Indelicato, diretor do Laboratório Kastler Brossel na Universidade Pierre e Marie Curie, em Paris.
O novo experimento, que é pelo menos 10 vezes mais preciso do que qualquer outro feito até agora, foi previsto por cientistas 40 anos atrás, mas só desenvolvimentos recentes na tecnologia o tornaram possível. O truque foi recolocar o elétron no átomo do hidrogênio com um múon negativo, uma partícula com a mesma carga elétrica, mas ao mesmo tempo 200 vezes mais pesado e instável.
A massa maior do múon dá ao hidrogênio muônico um tamanho atômico menor e permite uma interação muito maior com o próton. Como resultado, a estrutura do próton pode ser sondada com mais precisão do que usando o hidrogênio normal.
Jeff Flowers, cientista do Laboratório Nacional de Física britânico em Teddington, perto de Londres, disse que o trabalho pode levar as teorias da física de partículas a um novo território.
Se a descoberta for confirmada, será preciso mais do que o acelerador de partículas instalado no Laboratório Europeu de Física Nuclear (Cern), na Suíça, para testar o chamado Modelo Padrão, lista das partículas subatômicas que formam o Universo.
Se as medidas previamente aceitas sobre as quais centenas de cálculos foram feitos estiverem errados ou existir um problema com a própria teoria eletrodinâmica quântica, os físicos têm muito trabalho a fazer.
Agora, os teóricos vão refazer seus cálculos e mais experimentos serão feitos para confirmar ou refutar este estudo. Daqui a dois anos será feito um novo experimento no mesmo equipamento com hélio muônico.
Fonte: Nature

sexta-feira, 16 de abril de 2010

Novo elemento químico na tabela periódica

Investigadores russos e norte-americanos desenvolveram um novo elemento químico, o 117 (Ununséptio), que permitirá uma série de novas descobertas. A representação da novidade no quadro de Mendeleïev (tabela periódica) vem ocupar o espaço em branco na sétima fila, junto dos elementos ‘pesados’, aqueles com massa atômica elevada. Após as recentes descobertas dos 113, 114, 115, 116 e 118, o 117 permanecia ausente.
Tabela Periódica
© Revista Física (tabela periódica)
A equipe do Instituto de Investigação Nuclear (JINR), de Dubna, na Rússia; e nos EUA, do Laboratório Nacional Lawrence Livermore e do Laboratório Oak Ridge, observou o elemento ao longo de uma experiência através de um acelerador de partículas do Dubna, onde outros também foram descobertos.
Para o 92, o urânio, cujo estado natural tem 92 prótons, os físicos tiveram de fabricar novos elementos pesados através de colisões provocadas. O 117 (que não existe na natureza) foi o último a preencher a lista devido ao fato de a preparação da experiência apresentar certas dificuldades. Foi encontrado ao manipular átomos de cálcio e berquélio.
Para além de preencher a lacuna na tabela de elementos químicos de Mendeleïev, abre novos horizontes aos investigadores da área, como por exemplo, a teoria da ilha de estabilidade, uma região onde elementos pesados (ainda desconhecidos) teriam uma grande estabilidade e os “elementos pesados fabricados” se desintegrariam em menos de um milissegundo.
Muitos cientistas acreditam que elementos ainda mais pesados possam ocupar uma "ilha de estabilidade", na qual átomos superpesados poderiam se manter íntegros por longos períodos. Esta ideia de estabilidade deve-se a um determinado número de neutrons e prótons presentes nestes átomos, e descobrir tais elementos poderia abrir a porta a novas descobertas. A descoberta do 117 é mais um passo a caminho dessa "ilha".
Resta saber também o que existe depois da ilha de estabilidade. Até onde a natureza vai permitir que o homem construa átomos cada vez mais complexos é uma das principais questões da ciência.
Fonte: Science