sábado, 6 de abril de 2024

Termodinâmica descreve a expansão do Universo

A mudança de um regime de expansão desacelerada (na era dominada pela radiação e pela matéria) para um regime de expansão acelerada (na era dominada pela energia escura) se assemelharia a uma transição de fase termodinâmica.

© Revista Física (expansão térmica do Universo)

A ideia da expansão do Universo tem já quase um século. A proposição de que as galáxias distantes estão se afastando da Terra e de que a velocidade de afastamento cresce com a distância foi teorizada pelo belga Georges Lemaître (1894-1966) em 1927 e confirmada observacionalmente pelo norte-americano Edwin Hubble (1889-1953) dois anos depois. Tal confirmação foi proporcionada pelo redshift (desvio para o vermelho) do espectro da radiação eletromagnética recebida desses objetos longínquos. 

Em 1998, um novo e surpreendente ingrediente foi acrescentado ao modelo. Um conjunto de observações de estrelas supernovas muito distantes, realizadas pelo Supernova Cosmology Project e pelo High-Z Supernova Search Team, mostraram que a expansão do Universo estava se acelerando, e não sendo retardada por efeito gravitacional como se supunha. Essa descoberta levou ao conceito de energia escura, que supõe-se contribuir com mais de 68% da energia total do Universo observável atual, enquanto a matéria escura e a matéria comum contribuem com 26% e 5%, aproximadamente.

“Medidas de redshift apontam para uma expansão acelerada adiabática [isto é, sem troca de calor] e anisotrópica [que não é a mesma em todas as direções]”, diz Mariano de Souza, professor do Departamento de Física do Instituto de Geociências e Ciências Exatas da Universidade Estadual Paulista (Unesp), campus de Rio Claro. E prossegue: “Conceitos fundamentais da termodinâmica permitem inferir que toda expansão adiabática é acompanhada de um resfriamento, no efeito barocalórico [capaz de gerar calor quando submetido a pressão] que é quantificado pela chamada razão de Grüneisen.” 

Em 1908, o físico alemão Eduard August Grüneisen (1877-1949) propôs uma expressão matemática para o denominado parâmetro de Grüneisen efetivo, Γeff, que relaciona três propriedades físicas de um material: o coeficiente de expansão térmica, o calor específico e a compressibilidade isotérmica. Quase um século depois, em 2003, Lijun Zhu e colaboradores demonstraram que a parte singular de Γeff, chamada “razão de Grüneisen”, definida como a razão entre o coeficiente de expansão térmica e o calor específico, aumenta expressivamente nas vizinhanças de um ponto crítico quântico devido ao acúmulo de entropia. 

Em 2010, Mariano de Souza e colaboradores demonstraram que o mesmo ocorre para um ponto crítico a temperatura finita. Os pesquisadores da Unesp liderados por Souza utilizaram o parâmetro de Grüneisen para descrever aspectos intricados relacionados à expansão do Universo. 

“A dinâmica associada à expansão do Universo é geralmente descrita pelo modelo de um fluído perfeito, cuja equação de estado é dada por ω = p/ρ, onde ω é o chamado parâmetro da equação de estado, p a pressão e ρ a densidade de energia. Embora amplamente utilizado, o significado físico de ω ainda não havia sido discutido de forma apropriada. Ou seja, ω era tratado apenas como uma constante para cada era do Universo. Um dos resultados importantes de nosso trabalho é a identificação de ω com o parâmetro de Grüneisen efetivo, por meio da equação de estado de Mie-Grüneisen”, explica Souza. 

Os pesquisadores demonstraram, utilizando o parâmetro de Grüneisen, que o contínuo resfriamento do Universo está associado a um efeito barocalórico, isto é, que relaciona pressão e temperatura. Tal efeito, por sua vez, ocorre devido à expansão adiabática do Universo. Sob essa perspectiva, propuseram que, na era dominada pela energia escura, na qual atualmente nos encontramos, o parâmetro de Grüneisen depende do tempo. Um dos aspectos interessantes desse trabalho é que utiliza conceitos da termodinâmica e da física do estado sólido, como stress (tensão) e strain (deformação), para descrever a expansão anisotrópica do Universo. “Demonstramos que o parâmetro de Grüneisen está naturalmente incluído no tensor de stress energia-momento presente nas celebradas equações de campo de Einstein, o que proporciona uma nova maneira de se investigar efeitos anisotrópicos associados à expansão do Universo. 

Estes não excluem o cenário de um possível Big Rip. A hipótese do Big Rip (Grande Ruptura) foi apresentada pela primeira vez em 2003, em artigo publicado no periódico Physical Review Letters. Ela diz que, se a quantidade de energia escura for suficiente para acelerar a expansão do Universo além de uma velocidade crítica, isso poderá causar uma ruptura no “tecido” do espaço-tempo. 

Ainda sob a perspectiva do parâmetro de Grüneisen, os pesquisadores conjecturam que a mudança de um regime de expansão se assemelha a uma transição de fase termodinâmica. Isso porque que Γeff muda de sinal quando a expansão do Universo muda de desacelerada para acelerada. Tal mudança de sinal de assemelha-se à assinatura típica de transições de fase na física da matéria condensada. 

Como se sabe, a energia escura foi associada à constante cosmológica Λ [lambda]. Primeiro postulada e depois rejeitada por Einstein, a constante cosmológica foi reabilitada quando se descobriu que a expansão do Universo estava acelerando em vez de desacelerar. O modelo hegemônico, chamado de Λ-CMD(Lambda-Cold Dark Matter), confere à constante cosmológica um valor fixo. Isto é, supõe que a densidade da energia escura se mantenha constante à medida que o Universo expande. Mas existem outros modelos que assumem que densidade da energia escura, e consequentemente Λ, variem no tempo.

“Atribuir um valor fixo para Λ equivale a atribuir também um valor fixo para ω. Mas o reconhecimento de ω como o parâmetro de Grüneisen efetivo permite inferir uma dependência temporal de ω à medida que o Universo expande na era dominada pela energia escura. E isso implica diretamente em uma dependência temporal de Λ ou da constante universal de gravitação”, sublinha Souza. 

O estudo, como se percebe, abre uma nova via de interpretação da expansão do Universo sob a luz da termodinâmica e de conceitos da física da matéria condensada e pode vir a ter importantes desdobramentos.

Um artigo foi publicado no periódico Results in Physics

Fonte: Revista FAPESP