segunda-feira, 28 de fevereiro de 2011

Criada fibra óptica com cristal semicondutor

Um grupo de cientistas dos Estados Unidos anunciou o desenvolvimento de uma nova classe de fibra óptica. Trata-se da primeira fibra com o interior feito com seleneto de zinco, um composto amarelo claro com propriedades semicondutoras.
fibra óptica com cristal semicondutor
© PSU (fibra óptica com cristal semicondutor)
A nova classe de fibra óptica que permite, segundo os autores, a manipulação mais eficiente da luz e poderá ser usada no desenvolvimento de tecnologias de laser mais versáteis para uso em medicina ou como sensores ambientais e químicos.
John Badding, da Universidade da Pensilvânia, coordenador da pesquisa, explicou que a tecnologia de fibra óptica tem sido limitada pela utilização de um núcleo vítreo.
"O vidro tem um arranjo desordenado de átomos. Já uma substância cristalina, como o seleneto de zinco, é altamente ordenada. Essa ordem permite a transmissão de luz com comprimentos de onda mais longos, especificamente na região do infravermelho médio," disse ele.
Ao contrário de vidro de sílica, que é tradicionalmente utilizado na construção de fibras ópticas, o seleneto de zinco é um composto semicondutor.
É conhecido há muito tempo que o seleneto de zinco é um composto útil, capaz de manipular a luz de uma forma que a sílica não consegue. O desafio foi colocar este composto em uma estrutura de fibra, algo que nunca havia sido realizado antes.
Usando uma técnica de deposição química sob alta pressão, desenvolvida por Justin Sparks, coautor da pesquisa, os cientistas depositaram núcleos de seleneto de zinco no interior de capilaridades do vidro, criando esta nova classe de fibras ópticas.
A nova fibra óptica demonstrou duas vantagens importantes. Primeiramente, os pesquisadores descobriram que a nova fibra é mais versátil não apenas no espectro visível, mas também no infravermelho, a radiação eletromagnética com comprimentos de onda acima da luz visível. A tecnologia atual de fibras ópticas é ineficiente na transmissão da luz infravermelha. A quebra dessa barreira abre caminho para o uso das fibras ópticas na construção de lasers infravermelhos, potencialmente encontrando usos na área médica, em cirurgias, por exemplo. Em segundo lugar, ela é mais eficiente na conversão de luz de uma cor para outra.
"Quando as fibras ópticas tradicionais são usadas em sinalização, exposições e em arte, nem sempre é possível obter as cores que você quer. O seleneto de zinco, por meio de um processo chamado de conversão de frequência não linear, tem maior capacidade de alterar as cores", disse Badding.
Os pesquisadores destacam ainda que a tecnologia poderá ser útil na fabricação de novos detectores de poluentes e de toxinas.
"Moléculas diferentes absorvem luz de diferentes comprimentos de onda. Por exemplo, a água absorve, ou pára, a luz com comprimento de onda de 2,6 micrômetros. Mas as moléculas de certos poluentes ou outras substâncias tóxicas podem absorver a luz de comprimentos de onda muito maiores. Se pudermos transportar luz de comprimentos de onda mais longos através da atmosfera, poderemos ver quais substâncias estão lá com muito mais clareza", disse Badding.
Fonte: Advanced Materials

sexta-feira, 25 de fevereiro de 2011

Oscilador quântico acoplado

O oscilador quântico acoplado possui dois osciladores harmônicos, onde cada oscilador envia para o outro exatamente um quanta de energia, a menor unidade possível de energia.
 dispositivo do oscilador harmônico acoplado
© NIST (dispositivo do oscilador quântico acoplado)
Este é o aparato onde os dois íons de berílio ficaram presos para trocar a menor unidade mensurável de energia. Os íons ficam a cerca de 40 micrômetros um do outro, acima do quadrado de ouro que se pode ver no centro. O chip está rodeado por uma malha de cobre e ouro para evitar o acúmulo de cargas estáticas.
O oscilador quântico acoplado foi construído por cientistas do Instituto Nacional de Padronização e Tecnologia dos Estados Unidos. Eles colocaram dois íons de berílio próximos um ao outro e os induziram a ficar trocando as menores unidades de energia que se pode medir. Como a troca de energia equivale à troca de informações, esse oscilador quântico  acoplado poderá ser usado para transferir, por exemplo, dados codificados em um fóton, entre dois íons.
Há possibilidade de transferência da informação quântica para um oscilador mecânico, que poderia servir de interface neste sistema. O movimento dos íons, embora aconteça em condições regidas pela mecânica quântica, pode ser comparado ao comportamento de dispositivos osciladores do mundo macroscópico, como o pêndulo de um relógio ou um diapasão.
A troca de energia de vários quanta foi detectada a cada 155 microssegundos. A troca de um quanta foi menos comum, e ocorreu a cada 218 microssegundos.
Os íons podem trocar energia indefinidamente, até que o processo seja interrompido pelo aquecimento do dispositivo que funciona com temperatura de -269ºC.
Essa capacidade de troca de energia, ou de informações, em nível quântico, é mais uma ferramenta na construção dos computadores quânticos. O acoplamento direto de íons postos em locais separados pode simplificar as operações lógicas e ajudar a corrigir erros de processamento.
Além disso, o experimento sugere que as interações podem ser usadas para conectar diferentes tipos de sistemas quânticos, como um íon e uma partícula de luz, um fóton, para transferir informações em uma rede quântica. Por exemplo, um íon aprisionado poderia atuar como um "transformador quântico" entre um qubit (bit quântico) supercondutor e um qubit feito de fótons.
Fonte: Nature

quinta-feira, 24 de fevereiro de 2011

Simulador quântico torna-se acessível

Os físicos experimentais se esforçam para isolar as medições sensíveis das influências perturbadoras do meio ambiente.
ilustração de um íon interagindo com simulador quântico
© Nature (ilustração de um íon interagindo com simulador quântico)
Um simulador quântico desenvolvido por físicos austríacos oferece novas perspectivas para o estudo do comportamento de sistemas quânticos de alta complexidade.
Muitos fenômenos em nosso mundo são em função da natureza da física quântica: a estrutura dos átomos e moléculas, reações químicas, as propriedades dos materiais, o magnetismo e possivelmente também alguns processos biológicos. Como a complexidade dos fenômenos aumenta exponencialmente com mais partículas quânticas envolvidas, um estudo detalhado destes sistemas complexos rapidamente chega ao seu limite, e os computadores convencionais falham quando calculam tais problemas. Para superar essas dificuldades, os físicos vêm desenvolvendo simuladores quânticos em várias plataformas, tais como átomos neutros, íons ou sistemas de estado sólido, que semelhantes aos computadores quânticos, utilizam a natureza particular da física quântica para controlá-los.
Em outro avanço neste campo, uma equipe de jovens cientistas em grupos de pesquisa de Rainer Blatt e Peter Zoller no Instituto de Física Experimental e Física Teórica da Universidade de Innsbruck e do Instituto de Óptica Quântica e Informação Quântica (IQOQI) da Academia Austríaca de Ciências foram os primeiros a projetar uma caixa de ferramentas abrangente para um computador quântico de sistema aberto, que permitirá aos investigadores a construção de simuladores quânticos mais sofisticadas para a investigação de problemas complexos na física quântica.
Os físicos em seus experimentos tentam minimizar tanto quanto possível as perturbações ambientais. Tais distúrbios geralmente causam perda de informação em sistemas quânticos e destroem os efeitos quânticos como o emaranhamento ou a interferência.
Usando a dissipação, os pesquisadores são capazes de gerar e intensificar os efeitos quânticos, tais como o emaranhamento, no sistema.
O uso benéfico de um ambiente que permite a realização de novos tipos de dinâmica quântica e a investigação de sistemas têm sido pouco acessível para os experimentos. Recentemente, através desta pesquisa foi possível implementar com sucesso esses efeitos dissipativos em um simulador quântico.
Fonte: Nature

domingo, 20 de fevereiro de 2011

O primeiro antilaser é construído

O laser é uma invenção de mais de 50 anos de idade usado em diversas tecnologias. Recentemente, foi construído o antilaser, o primeiro aparelho capaz de prender e anular feixes de laser.
ondas de luz no antilaser
© Universidade de Yale (ondas de luz no antilaser)
Um antilaser consome a luz que o atinge, produzindo escuridão e calor. Sua aplicação poderá ocorrer provavelmente na próxima geração de computadores ópticos, que serão alimentados por luz e elétrons.
Um laser amplifica a luz e funciona como "meio de ganho", criando um feixe de fótons idênticos, uma onda de luz coerente, na qual todos os fótons têm a mesma frequência e amplitude e todos estão em fase.
A luz original é injetada em uma cavidade contendo um gás, situada entre dois espelhos. Os fótons alteram o estado quântico dos elétrons do gás, liberando outros fótons idênticos.
Com todos esses fótons refletindo-se de um lado para o outro entre os dois espelhos, e chocando-se com mais elétrons, cada vez mais fótons são liberados, todos idênticos, até criar um feixe brilhante de luz que escapa da armadilha.
É assim que as coisas funcionam quando a seta do tempo aponta para o futuro, como usual.
O que A. Douglas Stone e seus colegas da Universidade de Yale fizeram agora foi colocar o relógio para funcionar ao reverso, pegando a luz de um laser e convertendo-a em calor.
Como inverter todo o processo seria complicado demais, os pesquisadores tiveram a ideia de disparar dois feixes de laser, um na direção do outro, de forma que os dois se cancelassem perfeitamente.
Os dois feixes de laser foram dirigidos para uma "cavidade" que é na verdade uma pastilha de silício, que funciona como "meio de perda".
O silício alinha as ondas de luz de tal forma que elas ficam presas, refletindo-se entre suas paredes indefinidamente, até serem absorvidas e se transformarem em calor.
O antilaser de laser é chamado de tempo reverso ou CPA (Coherent Perfect Absorber). Não exatamente perfeito. O laser reverso de silício absorveu 99,4% da luz infravermelha do laser original, emitida em um comprimento de onda de 998,5 nanômetros, transformando-a em calor. Mas a teoria diz é possível chegar em 99,999% de absorção.
O protótipo do antilaser também ainda não tem o tamanho ideal. Ele mede 1 centímetro de lado, embora os cálculos indiquem que o ideal seria uma pastilha de 6 micrômetros.
A equipe também espera conseguir ajustar o dispositivo para que ele seja capaz de absorver lasers que emitem luz na faixa visível do espectro, assim como nas faixas específicas do infravermelho utilizadas em comunicações por fibra óptica.
Segundo os cientistas, ele poderá ser usado, no futuro, em chaves ópticas, sensores e até em uma próxima geração de computadores, os chamados computadores ópticos.
Como os dados nos processadores ópticos serão transferidos por luz, poderá ser necessário recolher o dado óptico e enviá-lo para um processamento externo, fora do chip. O antilaser poderá fazer isto.
Outra possibilidade é na radiologia, onde o princípio do laser reverso poderá ser usado para dirigir a radiação eletromagnética com precisão para um ponto específico no interior dos tecidos humanos, apesar da opacidade desses tecidos.
Fonte: Science

quarta-feira, 16 de fevereiro de 2011

Transístor de plástico flexível

Na busca pelo desenvolvimento de aparelhos eletrônicos flexíveis, um dos maiores obstáculos tem sido a criação de transistores com estabilidade suficiente para funcionar em vários ambientes.
transístor de plástico dobrável
© Gatech (transístor de plástico dobrável)
A diferença entre o frio seco e congelado do norte da Europa e o calor úmido dos trópicos tem sido demais para a eletrônica orgânica, cujos componentes flexíveis são feitos basicamente de plástico.
Agora, pesquisadores do Instituto de Tecnologia da Geórgia, nos Estados Unidos, desenvolveram uma técnica que combina os transistores orgânicos de efeito de campo com uma porta isolante de duas camadas.
Isto permite que o transístor funcione com uma estabilidade sem precedentes e com um nível adequado de desempenho, que não depende apenas dos semicondutores propriamente ditos, mas também da interface entre os semicondutores e as portas dielétricas, ou isolantes.
O novo transístor orgânico pode ser produzido em massa, com técnicas industriais, em uma atmosfera normal, pois a fabricação em temperaturas mais baixas é essencial para que o componente seja compatível com os dispositivos de plástico em que deverá funcionar.
A bicamada dielétrica é feita de um polímero fluorado, conhecido como CYTOP, e de uma camada de óxido metálico de elevada constante dielétrica, criada por deposição de camadas atômicas.
Quando usadas isoladamente, cada uma dessas substâncias tem suas vantagens e desvantagens.
O CYTOP é conhecido por formar poucos defeitos na interface do semicondutor orgânico, mas também tem uma constante dielétrica muito baixa, o que requer um aumento na tensão de funcionamento.
O metal-óxido de k elevado utiliza baixa tensão, mas não tem boa estabilidade por causa de um elevado número de defeitos na interface.
Bernard Kippelen e sua equipe descobriram que a combinação dos dois materiais anula em grande parte os defeitos das substâncias isoladas. Anteriormente, a equipe de Kippelen já havia construído um transístor orgânico usando carbono 60.
ciclos de funcionamento dos transístores
© Advanced Materials (ciclos de funcionamento dos transístores)
Os transistores sobreviveram a mais de 20.000 ciclos de funcionamento, sem nenhuma degradação, mesmo quando foram submetidos ao dobro da sua corrente nominal. Mesmo dentro de uma câmara de plasma eles funcionaram por cinco minutos sem degradação.
Fonte: Advanced Materials

segunda-feira, 14 de fevereiro de 2011

Temperaturas abaixo do zero absoluto podem ser alcançadas?

O zero absoluto é um limite inviolável para além do qual é impossível explorar. De fato, há um reino estranho de temperaturas negativas, que não só existe na teoria, mas também se mostrou acessível na prática, e poderia revelar novos estados da matéria.
temperaturas absolutas negativas são mais quentes
© NewScientist (temperaturas absolutas negativas)
A temperatura é definida pela forma como a adição ou a remoção de energia afeta a quantidade de desordem, ou entropia, em um sistema.
Para os sistemas nas temperaturas positivas com as quais estamos acostumados, o acréscimo de energia aumenta a desordem: aquecer um cristal de gelo vai fazer com que ele se derreta em um líquido mais desordenado, por exemplo.
Continue a remover energia e você vai chegar cada vez mais perto do zero na escala absoluta, ou escala Kelvin, que é -273,15 °C, onde a energia do sistema e a entropia estarão no mínimo.
Sistemas de temperatura negativa, entendidas como abaixo do zero absoluto, têm comportamento oposto: acrescentar energia reduz sua desordem e, portanto, sua temperatura.
Mas eles não são frios no sentido convencional de que o calor irá fluir para eles a partir de sistemas com temperaturas positivas.
Na verdade, os sistemas com temperaturas absolutas negativas têm mais átomos em estados de alta energia do que é possível mesmo nas mais elevadas temperaturas na escala das "absolutas positivas".
Assim, o calor deve sempre fluir deles para os sistemas acima de zero Kelvin.
Criar sistemas de temperatura negativa para estudar as propriedades desse mundo bizarro, contudo, pode ser complicado.
Não dá para criá-los de maneira suave e contínua, sempre baixando a temperatura, já que não será possível romper a barreira do zero absoluto da maneira usual.
Mas é possível saltar sobre essa barreira, passando diretamente de uma determinada temperatura absoluta positiva (acima do zero absoluto) para uma temperatura absoluta negativa (abaixo do zero absoluto).
Isso já foi feito em experimentos nos quais núcleos atômicos foram colocados em um campo magnético, sob o qual eles agem como minúsculos ímãs, alinhando-se com o campo.
Quando o campo é subitamente revertido, os núcleos ficam momentaneamente alinhados na direção oposta àquela que corresponde ao seu menor estado de energia.
Na fração de tempo em que permanecem nesse estado fugaz, eles se comportam de forma coerente com a de um sistema com temperaturas absolutas negativas. Logo após eles se viram e se realinham com o campo.
esquema da entropia em função da energia
© Physical Review Letters (entropia em função da energia)
Como os núcleos só podem alternar entre dois estados possíveis, paralelo ao campo ou oposto a ele, este sistema oferece poucas possibilidades para investigação.
Em 2005, Allard Mosk, atualmente na Universidade de Twente, na Holanda, idealizou um experimento que poderia oferecer mais possibilidades de estudos do regime de temperaturas negativas.
Primeiro, lasers são usados para agrupar os átomos até formar uma bola muito coesa, que estaria em um estado altamente ordenado, ou de baixa entropia.
Outros lasers são então disparados sobre a bola de átomos para criar uma matriz de luz, a chamada grade óptica, que circundaria a bola de átomos com uma série de "poços" de baixa energia. O primeiro conjunto de lasers é então reajustado de modo que eles passam a tentar desconstruir a bola de átomos. Isso deixa os átomos em um estado instável, como se estivessem equilibrados no pico de uma montanha, prestes a rolar ladeira abaixo. A grade óptica funciona como uma série de fendas ao longo da montanha, travando a "descida" dos átomos montanha abaixo.
Neste estado, remover parte da energia potencial dos átomos, levando-os a rolar e se distanciar uns dos outros, levaria a uma maior desordem, a exata definição de um sistema de temperaturas absolutas negativas.
Agora a ideia de Mosk foi refinada por Achim Rosch e seus colegas da Universidade de Colônia, na Alemanha.
A nova proposta de experimento é essencialmente a mesma, mas os cálculos de Rosch e sua equipe dão mais fundamento à ideia, sustentando que ela é realmente factível.
O grande avanço, contudo, é que eles sugerem uma maneira de testar se o experimento realmente produzirá temperaturas negativas absolutas.
Como os átomos no estado de temperaturas negativas têm energias relativamente altas, eles deverão se mover mais rapidamente quando liberados da armadilha do que ocorrerá com uma nuvem de átomos com temperatura positiva.
Este é um território desconhecido, nunca antes explorado, com grande potencial para revelar surpresas.
Fonte: NewScientist e Physical Review Letters

terça-feira, 8 de fevereiro de 2011

Descoberto novo estado quântico da água

As características estranhas da água poderiam ser pelo menos parcialmente explicadas pela mecânica quântica.
modelo quântico da molécula de água
©  P. J. MacDougall (modelo quântico da molécula de água)
Essa é a afirmação feita por um grupo de físicos do Reino Unido e Estados Unidos, que fizeram medições extremamente sensíveis dos prótons em pequenas amostras de água e descobriram que essas partículas de prótons se comportam de forma muito diferente às de amostra muito maior.
A água tem uma série de propriedades que o distinguem de outras substâncias e que a tornam particularmente adequadas para sustentar a vida. Por exemplo, o fato de que a água em estado sólido é menos densa do que em estado líquido e que sua densidade máxima ocorre aos 4°C significa que os lagos congelam de cima para baixo, algo que era vital para a manutenção vida durante as eras glaciais na Terra.
No mais recente trabalho, George Reiter e seus colegas, da Universidade de Houston (EUA) focalizou na ligação de hidrogênio, que é a chave para as propriedades incomuns da água. Esta ponte de hidrogênio nas moléculas de água é caracterizada pela conexão do átomo de oxigênio de uma molécula com o átomo de hidrogênio de outra. As ligações de hidrogênio são normalmente consideradas principalmente como um fenômeno eletrostático, ou seja, que a água consiste de moléculas discretas ligadas entre si através de cargas positivas e negativas (que residem nos átomos de hidrogênio e oxigênio, respectivamente).
diagrama molecular de água líquida
© PhysicsWorld (diagrama molecular de água líquida)
Esta imagem simples é capaz de explicar algumas das características da água, tais como a sua estrutura, cujas previsões do modelo são coerentes com os resultados experimentais de espalhamento de nêutrons, que revelam quão distantes em média, um átomo de oxigênio está em relação ao seguinte. 
O que Reiter e sua equipe descobriram é que este modelo eletrostático não pode ser usado para prever as energias de prótons individuais dentro de moléculas de água. Eles chegaram a essa conclusão depois de confinar a água dentro de nanotubos de carbono de 1,6 nm de diâmetro e, em seguida, expor esses nanotubos à fonte de nêutrons de alta energia ISIS no laboratório Rutherford Appleton, no Reino Unido. O ISIS é um acelerador de prótons, cuja energia é de 800 MeV, produzindo intensos pulsos de 50 prótons por segundo.
A distribuição do momento dos prótons é fortemente dependente da temperatura, apresentando uma energia cinética 50% maior do que o previsto pelo modelo eletrostático em temperaturas baixas, e 20% maior a temperatura ambiente. O modelo eletrostático dá previsões razoavelmente precisas apenas para a água em grande volume a temperatura ambiente.
A equipe alega que isso é prova de que os prótons existem em um estado quântico observado anteriormente, quando a água está confinada a um volume muito pequeno, um estado que não é descrito pelo modelo eletrostático. Eles dizem que enquanto a distâncias de 0,1 nm que as moléculas geralmente separam apenas o potencial intermolecular também exerce uma força significativa, na escala de 0,01 nm, típico de um próton indivíduo potenciais flutuações quânticas também responsável que ocorrem ao longo das ligações de hidrogênio se tornam significativos. Desta forma, as ligações de hidrogênio apresentam flutuações quânticas e formam o que é conhecido como uma "rede eletrônica conectada", que provavelmente é a resposta ao confinamento que gera as grandes mudanças na energia dos prótons. 
Os pesquisadores confirmaram esta discrepância utilizando outros materiais. Por exemplo, eles descobriram que quando a água estava confinada dentro do material industrial nafion, uma membrana trocadora de prótons, utilizado em células a combustível, os prótons tinham quase o dobro da energia cinética da água bruta. Eles também descobriram que, ao usar nanotubos de carbono de 1,4 nm de diâmetro, de parede simples, a distribuição foi de 30% menos da energia cinética do que na água a granel.
Segundo Reiter, esse novo estado quântico pode ser importante para a vida porque o comprimento dos nanotubos usados para confinar a água nos experimentos, cerca de 2 nanômetros, é mais ou menos semelhante às distâncias entre as estruturas no interior das células biológicas. A mecânica quântica dos prótons na água sempre exerceu um papel no desenvolvimento da vida celular, mas nunca havia sido notado anteriormente.
Reiter acredita também que a pesquisa do seu grupo poderia ter aplicações práticas, tais como a melhoria do desempenho das células a combustível.
Sow-Hsin Chen, do Instituto de Tecnologia de Massachusetts, que não tomou parte na pesquisa atual, concorda que os resultados do experimento implicaria que o padrão das ligações de hidrogênio em águas confinadas pode ser bastante diferente do que na água bruta, e diz que o próximo passo é realizar simulações de mecânica quântica para descobrir como isso afeta as propriedades da água confinada. Mas ele adverte que nem todas as propriedades da água são necessariamente explicável usando a mecânica quântica em alguns casos poderia ser melhor explicada usando mecânica estatística.
Fonte: PhysicsWorld