domingo, 2 de junho de 2019

Observação da radiação Hawking

Físicos do Instituto de Tecnologia de Israel (Technion) confirmaram as previsões de uma teoria de Stephen Hawking sobre buracos negros, utilizando um análogo construído em laboratório.


© Revista Física (ilustração de um buraco negro)

Ao tentar aplicar as leis físicas que regem o calor nos buracos negros, o físico Stephen Hawking percebeu que estes objetos devem emitir radiação de suas superfícies, chamada Radiação Hawking. O mecanismo concatena a mecânica quântica com a gravidade.

Stephen Hawking apresentou sua teoria em 1974, depois de analisar o trabalho de outro físico, Jacob Bekenstein, da Universidade de Princeton. Para Bekenstein, a entropia de um buraco negro, ou seja, o caos de um sistema relativo ao seu volume, pressão, temperatura e energia, era proporcional à área de seu horizonte de eventos, ponto-limite do qual não é mais possível escapar desta região do espaço.

A entropia de um buraco negro é dada pela equação de Bekenstein-Hawking: S=k.A/4.lP2 , onde A é a área, k é a constante de Boltzmann e lP é o comprimento de Planck que é expreso por lP=G.h/2π.c3)1/2  , sendo h a constante de Planck, G a constante gravitacional e c a velocidade da luz.

Infelizmente, ainda não é posível se aproximar o suficiente de um buraco negro para provar ou refutar a teoria. Assim, os físicos testaram um buraco negro análogo de laboratório.

Os pesquisadores construíram tal análogo de buraco negro usando um material quântico chamado de condensado de Bose-Einstein. Neste condensado de Bose-Einstein, o horizonte de eventos do buraco negro artificial representa o ponto sem retorno para o som, ao invés da luz.

Os cientistas criaram um condensado de Bose-Einstein capturando 8.000 átomos de rubídio em um feixe de laser. Os condensados ​​de Bose-Einstein são sistemas de átomos ultrafrios, onde estranhos fenômenos quânticos se tornam visíveis em escalas maiores.

Os pesquisadores em seguida utilizaram um segundo laser para aumentar a energia potencial de apenas um lado do condensado de Bose-Einstein, tornando-o mais denso naquele lado. Uma transição brusca (como um horizonte de eventos) separa a área mais densa (fora do buraco negro) da área menos densa (dentro do buraco negro).

Do ponto de vista dos cientistas, ao olhar para o experimento, parece que todos os átomos de rubídio estão se movendo. Fora do buraco negro, na região mais densa, a velocidade do som é mais rápida do que a velocidade deste fluxo, de modo que as ondas sonoras podem se mover em qualquer direção. Na região menos densa, dentro do buraco negro, a velocidade do som é mais lenta, então as ondas sonoras apenas se afastam da transição brusca e penetram no buraco negro.

Esta experiência imita uma das características mais importantes de um buraco negro: fora do objeto, a luz pode se afastar dele ou entrar nele. Mas, uma vez dentro, não pode escapar. O análogo de laboratório substitui a luz pelo som, e os pesquisadores podem medir as ondas sonoras dentro e fora de seu “horizonte de eventos”. O sinal da radiação Hawking é uma correlação entre estes dois tipos de ondas.

Isto foi suficiente para extrair informações importantes sobre a radiação, ou seja, que ela tem um espectro térmico com uma temperatura determinada pelo que seria o análogo da gravidade neste sistema artificial.

Isto significa que o buraco negro artificial emitiu um espectro contínuo de comprimentos de onda, em vez de comprimentos de onda preferidos. Estas observações e as temperaturas estavam de acordo com o que foi previsto na teoria de Hawking.

Segundo o principal autor do estudo, o físico Jeff Steinhauer, isso mostra que “os cálculos de Hawking estavam corretos”. Contudo, provavelmente são um efeito real que acontece nestes tipos de sistemas.

Esta pesquisa é mais um exemplo da utilização de análogos para estudarmos fenômenos físicos impossíveis de serem observados. Eles servem como uma verificação importante das teorias que orientam nossa compreensão de coisas inacessíveis.

Agora, os pesquisadores esperam refazer repetidamente o experimento, a fim de determinar como a radiação Hawking muda com o tempo.

Quem sabe um dia possamos medir essas propriedades em buracos negros reais.

Fonte: Nature

sábado, 23 de março de 2019

Será que ondas sonoras transportam massa?


É perdoável pensar que nossa compreensão da física clássica já tenha atingido seu máximo ao longo dos quatro séculos desde que Isaac Newton inventou suas leis de movimento. Mas novas pesquisas surpreendentes mostram que ainda há segredos esperando para serem encontrados, escondidos à vista de todos; ou, pelo menos neste caso, ao alcance da voz.
© Shustterstock (ilustração de ondas sonoras)

Um grupo de cientistas teorizou que as ondas sonoras possuem massa, o que significa que os sons seriam diretamente afetados pela gravidade. Eles sugerem que os fônons, excitações coletivas parecidas com partículas, responsáveis pelo transporte de ondas sonoras através de um meio, podem exibir uma pequena quantidade de massa em um campo gravitacional. "Seria de se esperar que resultados de física clássica como esse já fossem conhecidos há muito tempo," diz Angelo Esposito, da Universidade de Columbia, principal autor do estudo.

Esposito e seus colegas se basearam em um artigo anterior, publicado no ano passado, no qual Alberto Nicolis, da Columbia, e Riccardo Penco, da Universidade Carnegie Mellon, sugeriram pela primeira vez que os fônons poderiam ter massa em um superfluido. O estudo mais recente, no entanto, mostra que este efeito também deve ser válido em outros materiais, incluindo líquidos e sólidos regulares, e até mesmo no próprio ar.

E, embora se espere que a quantidade de massa transportada pelos fônons seja pequena, comparável a um átomo de hidrogênio, cerca de 10-24gramas, ela pode, na verdade, ser mensurável. Exceto que, se você fosse medí-la, encontraria algo profundamente estranho: a massa dos fônons seria negativa, significando que eles cairiam "para cima". Com o tempo, sua trajetória gradualmente se afastaria de uma fonte gravitacional como a Terra. "Se tivessem massa gravitacional positiva, eles cairiam para baixo," diz Penco.

E a extensão da "queda" é igualmente pequena, com a variação dependendo do meio pelo qual o fônon está passando. Na água, onde o som se move a 1,5 quilômetros por segundo, a massa negativa do fônon faz com que se desloque a cerca de 1 grau por segundo. Mas isso corresponde a uma mudança de 1 grau ao longo de 15 quilômetros, o que seria extremamente difícil de medir.

Ainda que possa ser difícil, tal medida ainda deve ser possível. Esposito observa que, para distinguir a massa dos fônons, é possível procurá-los em um meio onde a velocidade do som seja muito lenta. Isso pode ser possível no hélio superfluido, onde a velocidade do som pode cair para centenas de metros por segundo ou menos, e a passagem de um único fônon pode mudar o equivalente a um átomo de material.

Alternativamente, em vez de buscar efeitos minúsculos ampliados em substâncias exóticas, os pesquisadores podem procurar por sinais mais óbvios de fônons portadores de massa estudando de perto ondas sonoras extremamente intensas. Os terremotos oferecem uma possibilidade, diz Esposito. De acordo com seus cálculos, um tremor de magnitude 9 liberaria energia suficiente para que a mudança resultante na aceleração gravitacional da onda sonora do terremoto pudesse ser mensurável usando relógios atômicos. (Embora as técnicas atuais não sejam suficientemente sensíveis para detectar o campo gravitacional de uma onda sísmica, futuros avanços na tecnologia podem tornar isso possível.)

É improvável que as ondas sonoras que têm massa tenham um grande impacto na vida cotidiana, mas a possibilidade que algo tão fundamental tenha passado despercebida por tanto tempo é intrigante.

Um artigo foi publicado no periódico Physical Review Letters.

Fonte: Scientific American

Levitação de objetos macroscópicos com luz


Pesquisadores da Caltech (Instituto de Tecnologia da Califórnia) estão desenvolvendo uma maneira de fazer levitar e impulsionar objetos usando apenas a luz, através da criação de determinados padrões, em nanoescala, na superfície dos objetos.


© H. Atwater (ilustração de objeto nano-modelado reorientado)

Embora ainda esteja na etapa teórica, o trabalho é um passo em direção ao desenvolvimento de uma espaçonave que poderia alcançar o planeta mais próximo fora do nosso Sistema Solar em 20 anos, alimentada e acelerada apenas pela luz.

A pesquisa foi feita no laboratório de Harry Atwater, Howard Hughes Professor de Física Aplicada e Ciência de Materiais na Divisão de Engenharia e Ciências Aplicadas da Caltech.

Décadas atrás, o desenvolvimento das chamadas “pinças ópticas” permitiu que os cientistas movessem e manipulassem objetos minúsculos, como nanopartículas, usando a pressão radiativa de um feixe de luz do laser nitidamente focado. Este trabalho formou a base para o Prêmio Nobel de Física de 2018. No entanto, as pinças só são capazes de manipular objetos muito pequenos e apenas a distâncias muito curtas.

Ognjen Ilic, pós-doutorando e autor do estudo, oferece uma analogia: "Pode-se levitar uma bola de pingue-pongue usando um fluxo constante de ar de um secador de cabelo. Mas não funcionaria se a bola de pingue-pongue fosse muito grande ou se estivesse muito longe do secador de cabelo, e assim por diante".

Com essa nova pesquisa, objetos de diversas formas e tamanhos, de micrômetros a metros, poderiam ser manipulados com um feixe de luz. A chave é criar padrões específicos em nanoescala na superfície de um objeto. Esse padrão interage com a luz de tal forma que o objeto pode se endireitar quando perturbado, criando um torque de restauração para mantê-lo no feixe de luz. Assim, em vez de exigir raios laser altamente focalizados, o padrão dos objetos é projetado para "codificar" sua própria estabilidade. A fonte de luz também pode estar a milhões de quilômetros de distância.

"Nós criamos um método que pode levitar objetos macroscópicos", diz Atwater, que também é diretor do Centro Conjunto de Fotossíntese Artificial. "Há uma aplicação audaciosa e interessante para usar essa técnica como meio de propulsão de uma nova geração de naves espaciais. Estamos longe de realmente fazer isso, mas estamos no processo de testar os princípios."

Em teoria, essa espaçonave poderia ser modelada com estruturas em nanoescala e acelerada por uma luz laser baseada na Terra. Sem precisar carregar combustível, a espaçonave pode alcançar velocidades muito altas, até relativísticas, e possivelmente viajar para outras estrelas.

Atwater também prevê que a tecnologia poderia ser usada aqui na Terra para permitir a rápida fabricação de objetos cada vez menores, como placas de circuito.

Um artigo descrevendo a pesquisa aparece na edição on-line da revista Nature Photonics.

Fonte: Caltech

terça-feira, 2 de outubro de 2018

Ferramentas feitas de luz

A Academia Real de Ciências da Suécia decidiu atribuir o Prêmio Nobel de Física de 2018 devido às invenções inovadoras no campo da física a laser.

ilustração do pulso de laser

© Johan Jarnestad (ilustração do pulso de laser)

Os laureados foram Arthur Ashkin, de 96 anos, do Bell Laboratories (EUA), pelas pinças ópticas que possibilitam a manipulação de pequenas partículas e sua aplicação aos sistemas biológicos; Gérard Mourou, de 74 anos, da École Polytechnique (França) e Universidade de Michigan (EUA), em conjunto com Donna Strickland, de 59 anos, da Universidade de Waterloo (Canadá), pelo método de geração de pulsos ópticos ultracurtos de alta intensidade. Os físicos Strickland e Mourou desenvolveram seu trabalho juntos na Universidade de Rochester, em Nova York, nos anos 80.

Os três compartilharão o prêmio de 9 milhões de coroas suecas, equivalente a 4 milhões de reais, sendo metade atribuída à Ashkin.

Em toda a história do Prêmio Nobel, criado em 1901, apenas duas mulheres tinham recebido o prêmio de Física: Marie Curie, em 1903, e Maria Goeppert-Mayer, em 1963.

Estas invenções revolucionaram a física a laser, onde objetos extremamente pequenos e processos incrivelmente rápidos estão agora sendo vistos sob uma nova luz. Instrumentos avançados de precisão estão abrindo áreas de pesquisa inexploradas e uma infinidade de aplicações industriais e médicas.

Usando uma abordagem engenhosa, eles conseguiram criar pulsos de laser de alta intensidade ultracurtos sem destruir o material. Primeiro eles esticaram os pulsos de laser a tempo de reduzir seu pico de potência, depois os amplicaram e finalmente os comprimiram. Se um pulso é comprimido no tempo e se torna mais curto, então mais luz é reunida no mesmo espaço minúsculo, a intensidade do pulso aumenta dramaticamente.

A técnica inventada por Strickland e Mourou, chamada de Chirped Pulse Amplification (CPA), logo se tornou padrão para os lasers subsequentes de alta intensidade. Seus usos incluem os milhões de cirurgias oculares corretivas que são realizadas todos os anos usando os raios laser mais nítidos.

Arthur Ashkin teve um sonho: imagine se raios de luz pudessem ser postos em ação e mover objetos. Na série Star Trek que começou em meados dos anos 1960, um raio trator pode ser usado para recuperar objetos, até mesmo asteroides no espaço, sem tocá-los. Claro, isso soa como pura ficção científica.

Podemos sentir que os raios do Sol carregam energia, embora a pressão do feixe é pequeno demais para que possamos sentir um pequeno cutucão. Mas sua força poderia ser suficiente para empurrar minúsculas partículas e átomos?

Imediatamente após a invenção do primeiro laser em 1960, Ashkin começou a experimentar com o novo instrumento na Bell Laboratories. Em um laser, as ondas de luz se movem de forma coerente, diferentemente luz branca comum em que os feixes são misturados em todas as cores do arco-íris e espalhados em todas as direções.

Ashkin percebeu que um laser seria a ferramenta perfeita para fazer com que os feixes de luz pudessem mover pequenas. Ele iluminou esferas transparentes de tamanho micrométrico e, imediatamente fez as esferas se moverem. Ao mesmo tempo, Ashkin ficou surpreso com a forma como as esferas foram deslocadas em direção ao meio do feixe, onde era mais intenso. A explicação é que num feixe de laser a sua intensidade diminui do centro para os lados. Portanto, a pressão da radiação que a luz do laser exerce sobre as partículas também varia, impulsionando-as em direção ao meio d o feixe, que mantém as partículas no centro.

Para também segurar as partículas na direção do feixe, Ashkin adicionou uma lente forte para focar a luz do laser. As partículas foram então atraídas para o ponto que tinha a maior intensidade de luz. Assim, nasceu uma armadilha, que veio a ser conhecida como pinças ópticas.

As inúmeras áreas de aplicação ainda não foram completamente exploradas, tais como: dispositivos eletrônicos mais rápidos, células solares mais eficazes, melhores catalisadores, aceleradores mais potentes, novas fontes de energia, ou manipulações farmacêuticas.

No entanto, mesmo agora essas célebres invenções nos permitem remexer no micromundo no melhor espírito de Alfred Nobel, para o maior benefício para a humanidade.

Fonte: The Royal Swedish Academy of Sciences

segunda-feira, 30 de julho de 2018

A ligação do bóson de Higgs com o quark top

O tão esperado acoplamento do bóson de Higgs com o quark top foi, finalmente, obtido no Large Hadron Collider (LHC), o grande colisor de hádrons, situado na fronteira franco-suíça.

ilustração do campo Brout-Englert-Higgs

© CERN/D. Dominguez (ilustração do campo Brout-Englert-Higgs)

O evento foi detectado de forma independente pelas duas principais equipes internacionais que atuam no LHC: a CMS e a Atlas.

O resultado é uma robusta confirmação da acurácia do chamado Modelo Padrão da Física de Partículas, construído coletivamente desde o início dos anos 1960.

“Como o bóson de Higgs participa do processo que produz as massas de todas as partículas, esperava-se que ele interagisse com as partículas proporcionalmente às suas massas. Isto é, que quanto mais pesada a partícula, maior fosse sua interação com o bóson. Trata-se de uma característica muito específica, que, segundo o Modelo Padrão, apenas o bóson de Higgs possui. Então, investigar se isso realmente ocorre experimentalmente é uma maneira muito forte de corroborar o modelo”, disse Sérgio Novaes, professor titular da Universidade Estadual Paulista (Unesp) e integrante da colaboração internacional CMS.

“Com as partículas leves, o acoplamento é pequeno e difícil de medir. Havia, portanto, uma grande expectativa em relação ao acoplamento do bóson de Higgs com o quark top, que é uma partícula muito pesada, mais pesada inclusive do que o próprio Higgs, com massa superior a 172 GeV/c2. Finalmente, conseguimos detectar e medir essa interação. E chegamos à conclusão de que, efetivamente, ocorre aquilo que havia sido predito pelo Modelo Padrão. O Higgs acopla-se proporcionalmente à massa do top. Foi uma grande confirmação do modelo”, disse Novaes.

A interação do bóson de Higgs com o quark top só foi possível devido ao aumento de energia do LHC. No evento em questão, a colisão de dois prótons gera um par quark-antiquark top (cada componente com mais de 172 GeV/c2) e um bóson de Higgs (com cerca de 125 GeV/c2). Isso corresponde quase à massa de 500 prótons. Então, no patamar atual de energia do colisor, de 13 TeV (13 trilhões de elétrons-volt), o choque de dois prótons produz massa equivalente a 500 prótons, e o restante da energia inicial manifesta-se sob a forma da energia das partículas produzidas. Aqui, vale lembrar que a energia se converte em massa, segundo a famosa equação de Einstein, E = m.c2, na qual E é a energia; m, a massa; e c, a velocidade da luz no vácuo.

Além disso, quanto maior a energia do colisor, maior a definição entre dois pontos observados. Com a energia atual do LHC, é possível diferenciar pontos situados a apenas 10-18 m. Para efeito de comparação, essa distância é um bilhão de vezes menor do que aquela na qual opera a nanotecnologia [10-9 m].

O bóson de Higgs – assim chamado em homenagem ao seu propositor, o físico britânico Peter Higgs, nascido em 1929 e Prêmio Nobel de Física de 2013 – foi incorporado ao Modelo Padrão na década de 1960, para resolver um problema teórico abstrato: que o modelo contivesse um ingrediente capaz de conferir massa às partículas que precisavam ter massa e, ao mesmo tempo, que permanecesse “renormalizável”, isto é, capaz de fazer predições.

Isso foi um dilema até que o físico norte-americano Steven Weinberg – ganhador do Prêmio Nobel de Física de 1979, junto com o paquistanês Abdus Salam e o norte-americano Sheldon Glashow – tivesse a ideia de agregar ao modelo o chamado “mecanismo de Higgs”.

“Não havia nenhuma evidência experimental da existência do bóson de Higgs. Sua proposição foi mais uma aventura teórica do que qualquer hipótese experimentalmente verificável. Tanto é que foram necessários 45 anos até a partícula ser finalmente detectada e anunciada, em 4 de julho de 2012”, disse Novaes.

A dificuldade da obtenção experimental é fácil de entender. Com massa de aproximadamente 125 GeV/c2, mais de 133 vezes a massa do próton, o bóson de Higgs é, depois do quark top, a segunda partícula mais massiva do Modelo Padrão. Sua produção, por uma ínfima fração de segundo, só é possível em contextos de altíssima energia, como aqueles que teriam existido logo depois do Big Bang ou os agora alcançados no LHC.

“Não houve, durante esses 45 anos, nenhuma hipótese alternativa que, ao mesmo tempo, conferisse massa às partículas e explicasse a interação entre elas. Trabalhei com isso desde o meu mestrado. Para mim, é um prazer enorme ter participado da detecção do bóson de Higgs em 2012. E ver, agora, mais uma confirmação dessa proposta teórica”, disse Novaes, atualmente no LHC, em Genebra, Suíça.

A afirmação de que o bóson de Higgs confere massa às partículas dá margem, às vezes, a uma interpretação equivocada. O motivo é que se imagina uma partícula entregando massa a outra pontualmente, mas não é disso que se trata.

A melhor ferramenta disponível para descrever esse nível da natureza é a teoria de campos. Nos marcos da mecânica quântica, as partículas não são corpúsculos diminutos, tais como concebidas na Física Clássica. Partículas são excitações do campo. Toda partícula é, na realidade, o quantum de um determinado campo. O fóton é o quantum do campo eletromagnético. O elétron é o quantum do campo do elétron. O bóson de Higgs é o quantum do campo de Higgs. E assim por diante. Segundo o Modelo Padrão, é o campo de Higgs que confere massa às partículas. Ao se manifestarem no espaço, as partículas interagem com ele. E, quanto maior a interação, maior a massa.

Assim, por exemplo, embora sejam idênticos quanto à carga (2/3) e ao spin (1/2), os quarks up e top apresentam enorme diferença de massa. A massa do top é quase 80 mil vezes maior. E isso é proporcional ao seu acoplamento ao campo de Higgs.

“O fato de a constante de acoplamento do bóson de Higgs ser proporcional à massa das partículas com as quais ele se acopla é uma predição universal do Modelo Padrão. Essa predição já havia sido corroborada no caso de partículas mais leves. Agora, o acoplamento com o quark top vem reforçar, ainda mais, a efetividade do modelo na descrição das partículas elementares e de suas interações”, disse Novaes.

A detecção do acoplamento do bóson de Higgs com o quark top decorreu da superação de enormes dificuldades experimentais. Uma dificuldade é que as três partículas resultantes da colisão (o quark top, o antiquark top e o bóson de Higgs) decaem, muito rapidamente, em outros objetos. O quark top decai no bóson W e no quark bottom. O W, por sua vez, decai em outras partículas.

Ora, o quark bottom é um objeto produzido copiosamente em colisões de prótons. Então, um grande desafio é distinguir o quark bottom originado pelo quark top de um pano de fundo extremamente abundante em quarks bottom. Além disso, o bóson de Higgs também decai em vários objetos. Tudo isso em um contexto no qual há cerca de 40 interações ocorrendo ao mesmo tempo.

“O estado final detectado é muito complexo e exige uma engenharia de big data fantástica, para que o sinal de interesse possa ser extraído desse background superabundante. É aquela história de achar umas poucas agulhas no palheiro”, disse Novaes.

E o “palheiro” é realmente colossal. Pois, a cada 25 bilionésimos de segundo, dois feixes, cada qual com 100 bilhões de prótons, colidem durante a atividade do LHC, gerando a maior quantidade de dados já produzida na face da Terra.

A descoberta foi descrita no periódico Physical Review Letters.

Fonte: CERN & Agência FAPESP

terça-feira, 17 de julho de 2018

Uma fonte de raios cósmicos fora da Via Láctea

Parece ter chegado ao fim o mistério da origem dos raios cósmicos de altíssima energia, as partículas mais energéticas do Universo, que chegam à Terra vindos de fora de nossa galáxia, a Via Láctea.

ilustração de um blazar emitindo neutrinos

© DESY (ilustração de um blazar emitindo neutrinos)

Uma equipe internacional de cientistas encontrou a primeira evidência de uma fonte de neutrinos de alta energia: uma galáxia ativa, ou blazar.

É a primeira vez que se identifica com tanta precisão a possível origem destas partículas, que, como se confirmou recentemente, são geradas fora da Via Láctea. A observação foi feita no dia 22 de setembro de 2017 no Observatório de Neutrinos IceCube, uma rede de 5.160 detectores instalados sob um bilhão de toneladas de gelo, construída próxima ao polo Sul, na Antártida.

As informações obtidas até agora corroboram a hipótese de que os buracos negros funcionariam como potentes aceleradores cósmicos de partículas, que atingiriam energias de milhões a bilhões de vezes superiores às produzidas nos maiores equipamentos já construídos pela ciência.

Descobertos em 1912 pelo físico austríaco Victor Hess, os raios cósmicos são partículas eletricamente carregadas vindas do espaço com velocidades próximas à da luz. Apesar de serem algumas das partículas mais abundantes no Universo, 100 trilhões passam através dos nossos corpos a cada segundo, estas partículas subatõmicas, eletricamente neutras, são notoriamente difíceis de serem detectadas porque raramente interagem com a matéria.

Enquanto os neutrinos primordiais foram criados durante o Big Bang, muitas destas partículas ilusórias são rotineiramente produzidas em reações nucleares através do cosmos. A maioria dos neutrinos que chegam à Terra derivam do Sol, mas acredita-se que aqueles que nos atingem com as energias mais altas provêm das mesmas fontes que os raios cósmicos, partículas altamente energéticas originárias de fontes exóticas fora do Sistema Solar.

Os raios cósmicos de mais baixa energia são criados e acelerados em explosões estelares na Via Láctea. Já os mais energéticos, com energias superiores a 1 EeV (1 exaelétrons-volts, ou 1018 elétrons-volts), devem ser prótons ou núcleos atômicos vindos de lugares muito distantes, fora de nossa galáxia. O principal desafio de determinar sua origem é que, por serem partículas eletricamente carregadas, não viajam em linha reta: sua trajetória é desviada ao atravessarem campos magnéticos dentro e fora das galáxias.

Uma maneira de contornar este problema é observar neutrinos de alta energia. Os neutrinos têm uma massa ínfima, carga elétrica nula e, portanto, quase não interagem com a matéria. Estas características permitem que viajem pelo espaço em linha reta e a velocidades próximas à da luz, atravessando quase tudo o que encontram pelo caminho sem serem perturbados, razão por que são chamados de partículas fantasmas.

Os astrofísicos estimam que alguns dos neutrinos de alta energia observados na Terra também venham de fora da galáxia e sejam produzidos pelos mesmos fenômenos que geram os raios cósmicos. Assim, traçar a origem destes neutrinos extragalácticos levaria também à origem dos raios cósmicos ultraenergéticos.

Em setembro de 2017, os detectores do IceCube registraram um sinal indicando a passagem de um único neutrino com energia de 290 TeV (teraelétrons-volts), 40 vezes a dos prótons acelerados no Large Hadron Collider (LHC), o maior acelerador de partículas do mundo, instalado na fronteira da Suíça com a França. Ao refazer o percurso do neutrino nos detectores do IceCube, os pesquisadores verificaram que sua origem seria um ponto do céu na constelação de Órion.

O telescópio espacial de raios gama Fermi da NASA e os telescópios MAGIC (Major Atmospheric Gamma Imaging Cherenkov) em La Palma, nas Ilhas Canárias, observaram esta parte do céu e encontraram o blazar conhecido, TXS 0506+056, num estado de intensa emissão de alta energia ao mesmo tempo que o neutrino foi detectado no Polo Sul.

Os blazares são os núcleos centrais de galáxias gigantes que abrigam um buraco negro supermassivo no núcleo, onde a matéria espiralada forma um disco giratório quente que gera enormes quantidades de energia, junto com um par de jatos relativísticos.

O TXS 0506+056 é uma galáxia com núcleo ativo. Isso significa que ela abriga em seu centro um buraco negro com massa muito elevada que, ao consumir a matéria ao redor, expulsa jatos de radiação luminosa que brilha mais do que todas as estrelas da galáxia.

Após os alertas do IceCube e do Fermi, 17 observatórios ao redor do mundo acompanharam as variações de brilho do TXS 0506+056. O objeto emite radiação em todas as faixas de energia do espectro eletromagnético, das mais baixas (ondas de rádio) até as mais altas (raios X e gama).

As observações sugerem que o brilho detectado seja a radiação gerada por um jato de matéria ejetada por campos magnéticos ao redor de um buraco negro de massa muito elevada (equivalente à de bilhões de sóis) no centro de uma galáxia a 4 bilhões de anos-luz de distância da Terra.

No caso do TXS 0506+056, seu jato está apontado diretamente para a Terra. Este aspecto permite que tanto a radiação eletromagnética, quanto os neutrinos produzidos ao longo do jato cheguem ao planeta depois de viajar durante 4 bilhões de anos em linha reta.

Duas coincidências permitiram aos pesquisadores conectar a origem do neutrino ao blazar: a detecção da partícula ocorreu simultaneamente ao aumento de brilho do TXS 0506+056 e tanto o neutrino quanto a radiação vieram da mesma região do espaço.

Seria essa coincidência mero fruto do acaso? Para diminuir o risco de estarem se iludindo, os pesquisadores analisaram dados coletados durante 10 anos pelo IceCube em busca de mais detecções de neutrinos de alta energia vindos da região do blazar TXS 0506+056. De setembro de 2014 a março de 2015, uma dúzia de neutrinos, possivelmente oriundos daquele mesmo ponto no céu, atravessaram os detectores ocultos no gelo da Antártida, mas deixaram um traço mais difuso.

Em 2017, a combinação de duas técnicas permitiu identificar a região do espaço em que ocorreu o choque explosivo de duas estrelas de nêutrons e estudar em detalhes as consequências desse tipo de colisão, fonte de elementos químicos pesados do Universo, como o ouro.

Esta observação fortalece muito a detecção inicial de um único neutrino de alta energia e aumenta o volume de dados que indicam que o blazar é a primeira fonte conhecida de neutrinos de alta energia e raios cósmicos de alta energia.

Fonte: Science

domingo, 6 de maio de 2018

Emaranhamento quântico num fio de cabelo

Talvez a predição mais estranha da teoria quântica seja o emaranhamento, um fenômeno no qual dois objetos distantes se entrelaçam de um modo que desafia a física clássica.

ilustração das peles vibratórias

© Petja Hyttinen/Olli Hanhirova (ilustração das peles vibratórias)

A imagem acima mostra peles vibratórias de 15 micrômetros de largura preparadas em chips de silício usados no experimento. As peles vibraram com uma alta frequência de ultrassom, e o estado quântico peculiar previsto por Einstein foi criado a partir das vibrações.

Em 1935, Albert Einstein expressou sua preocupação com esse conceito, se referindo a ele como uma "ação fantasmagórica à distância".

Atualmente, o emaranhamento é considerado o pilar da mecânica quântica, e é um recurso fundamental para uma série de tecnologias quânticas potencialmente transformadoras. O emaranhamento é extremamente frágil, e foi previamente observado apenas em sistemas microscópicos como a luz ou átomos, e, recentemente, em circuitos elétricos supercondutores.

Uma equipe liderada por Mika Sillanpää, da Universidade de Aalto, na Finlândia, mostrou que o emaranhamento de objetos maiores pode ser gerado e detectado.

Os pesquisadores conseguiram colocar os movimentos de duas peles vibratórias (com um princípio semelhante ao das peles dos instrumentos de percurssão) feitas de alumínio metálico e chip de silicone em um estado quântico de emaranhamento. Em comparação à escala atômica, os objetos envolvidos no experimento são verdadeiramente grandes e macroscópicos: de formato circular, as peles vibratórias têm um diâmetro semelhante à largura de um cabelo humano fino.

A equipe também incluiu cientistas da Universidade de Nova Gales do Sul (UNSW) em Canberra, na Austrália, Universidade de Chicago e a Universidade de Jyväskylä, na Finlândia. A abordagem utilizada no experimento foi baseada em uma inovação teórica desenvolvida por Matt Woolley, da UNSW, e Aashish Clerk, da Universidade de Chicago.

Os corpos vibrantes são projetados para interagir através de um circuito de microondas supercondutor. Os campos eletromagnéticos do circuito são usados para absorver todas as perturbações térmicas e isolar apenas as vibrações mecânico-quânticas.

Eliminar todas as formas de ruído é algo crucial para os experimentos, por isso eles foram conduzidos em temperaturas muito baixas, próximas ao zero absoluto (-2730C). De forma admirável, o experimento permitiu que o incomum estado de emaranhamento persistisse por longos períodos de tempo. Nesse caso, por mais de meia hora.

No futuro, os pesquisadores irão tentar teleportar as vibrações mecânicas. Em teletransporte quântico, propriedades de corpos físicos podem ser transmitidas através de distâncias arbitrárias usando a "ação fantasmagórica à distância.

Os resultados demonstram que agora é possível ter controle sobre objetos mecânicos maiores, nos quais estados quânticos exóticos possam ser gerados e estabilizados. Essa descoberta não apenas abre as portas para novos tipos de tecnologias quânticas e sensores, mas também pode permitir estudos de física fundamental, por exemplo, a elucidação da interação entre gravidade e mecânica quântica.

Fonte: Nature

domingo, 4 de março de 2018

Medição de alta precisão da massa do bóson W

A ATLAS Collaboration reporta a primeira medida de alta precisão no Large Hadron Collider (LHC) da massa do bóson W.

medição da massa do bóson W

© CERN/ATLAS (medição da massa do bóson W)

A imagem acima mostra um evento candidato de colisões próton-próton no experimento ATLAS: decaimento de um Bosão W para 1 múon (um elétron mais pesado e hiper-relativista) e 1 neutrino originados dos feixes estáveis a 7 TeV. O múon (linha vermelha) tem um momento transverso de 32,8 GeV e a energia transversal em falta é de 52,4 GeV (linha a azul) resultando numa massa transversal de 82,9 GeV no sistema di-leptônico. Foi detectada pouca atividade hadrônica, o que é indicação de pequeno momento transversal do candidato W. O evento foi registado em Junho de 2011 e foi usado para a medição da massa do bóson W.

Esta é uma das duas partículas elementares que medeiam a interação fraca, uma das forças que governam o comportamento da matéria em nosso universo. O resultado relatado fornece um valor de 80.370 ± 19 MeV (com uma precisão instrumental de 0.02%) para a massa do bóson W, o que é consistente com a expectativa do Modelo Padrão de Física de Partículas, a teoria que descreve as partículas conhecidas e suas interações. Note-se que existem três bósons que medeiam a força nuclear fraca, sendo que o bóson W é na realidade dois: o +W e o -W, que se diferenciam apenas pela carga elétrica, e o terceiro é o bóson Z. Um exemplo da força nuclear fraca é a fusão do hidrogênio para um dos seus isótopos estáveis, o deutério.

A medição é baseada em cerca de 14 milhões de bósons W registrados em um único ano (2011), quando o LHC estava funcionando na energia de 7 TeV. Ele corresponde às medidas anteriores obtidas no LEP, o antepassado do LHC no CERN (European Organization for Nuclear Research) e no Tevatron, um antigo acelerador do Fermilab nos Estados Unidos, cujos dados possibilitaram refinar continuamente esta medida nos últimos 20 anos.

O bóson W é uma das partículas mais conhecidas do Universo. A sua descoberta em 1983 coroou o sucesso do síncrotron próton-antipróton do CERN, que conduziu ao Prêmio Nobel de Física em 1984. Embora as propriedades do bóson W tenham sido estudadas há mais de 30 anos, medir sua massa em alta precisão continua sendo um grande desafio.

O Modelo Padrão é muito poderoso para prever o comportamento e determinadas características das partículas elementares e permite deduzir certos parâmetros de outras quantidades bem conhecidas. As massas dos bósons W, o quark top e o bóson de Higgs, por exemplo, estão ligados por relações de física quântica. Portanto, é muito importante melhorar a precisão das medidas de massa do bóson W para entender melhor o bóson de Higgs, refinar o Modelo Padrão e testar sua consistência geral.

Notavelmente, a massa do bóson W pode ser prevista hoje com uma precisão superior à das medidas diretas. É por isso que é um ingrediente fundamental na busca de física nova, pois qualquer desvio da massa medida da predição pode revelar novos fenômenos conflitantes com o Modelo Padrão.

A medição depende de uma calibração completa do detector e da modelagem teórica da produção de bosons W. Estes foram alcançados através do estudo dos eventos do bóson Z e várias outras medidas auxiliares. A complexidade da análise significou que levou quase cinco anos para a equipe da ATLAS alcançar este novo resultado. Uma análise mais aprofundada com a enorme amostra de dados agora disponíveis do LHC permitirá uma maior precisão num futuro próximo.

Um artigo foi publicado no periódico European Physical Journal C.

Fonte: European Organization for Nuclear Research

terça-feira, 3 de outubro de 2017

Prêmio Nobel de Física: ondas gravitacionais

O Prêmio Nobel da Física de 2017 foi concedido hoje ao alemão Rainer Weiss e aos americanos Barry C. Barish e Kip S. Thorne pela criação, nos anos 1990, do Laser Interferometer Gravitational-Wave Observatory (LIGO), nos Estados Unidos, que permitiu a detecção de ondas gravitacionais pela primeira vez na História.

detectando ondas gravitacionais

© Johan Jarnestad (detectando ondas gravitacionais)

Rainer Weiss nasceu em Berlim, na Alemanha, em 1932, ele é pesquisador do Instituto de Tecnologia de Massachusetts (MIT), em Cambridge, nos Estados Unidos. Barry C. Barish nasceu em 1936, em Omaha, no estado americano de Nebraska, e atua no Instituto de Tecnologia da Califórnia (Caltech), em Pasadena. Kip S. Thorne nasceu em 1940, em Logan, no Utah, e também atua no Caltech.

Os cientistas laureados forneceram decisivas contribuições ao detector LIGO e à observação de ondas gravitacionais. As ondas gravitacionais foram previstas por Albert Einstein em sua Teoria Geral da Relatividade, publicada há cem anos, mas extremamente sutis, elas pareciam impossíveis de serem detectadas.

A observação das ondas gravitacionais no Universo só aconteceu no dia 14 de setembro de 2015, no LIGO. Naquela data, os cientistas finalmente detectaram as tênues vibrações emitidas por dois buracos negros que giram um ao redor do outro, a 1,3 bilhão de anos-luz da Terra. A descoberta foi divulgada no dia 11 de fevereiro de 2016. O sinal foi extremamente fraco quando chegou à Terra, mas já prometeu uma revolução na astrofísica. As ondas gravitacionais são uma maneira totalmente nova de observar os eventos mais violentos no espaço e testar os limites do nosso conhecimento.

Antes da façanha, os físicos sempre utilizaram o espectro eletromagnético para fazer suas descobertas. Mas o experimento provou que também é possível estudar o Universo a partir de outros tipos de ondas existentes. A partir dali, os cientistas se convenceram de que, se é possível detectar ondas gravitacionais, talvez seja possível descrever fenômenos que não emitem ondas eletromagnéticas suficientemente significativas para serem observadas.

A existência das ondas gravitacionais passou a ser concebida quando, no final dos anos 1950, estudos demonstraram que as ondas carregavam energia; e, por isso, poderiam ser mensuráveis.

Em 1970, os astrônomos Joseph Taylor e Russel Hulse mostraram que as estrelas giravam ao redor delas mesmas e, com isso, perdiam energia. Esta energia perdida seria uma indicação da existência das ondas gravitacionais. Por esse achado, Taylor e Hulse foram laureados com o Nobel de Física de 1993.

Entretanto, estas demonstrações eram indicações indiretas das ondas gravitacionais. A evidência direta do fenômeno só viria depois de um imenso esforço, uma vez que não seria fácil provocar alterações no espaço-tempo.

Em meados da década de 1970, Rainer Weiss já havia analisado possíveis fontes de ruído de fundo que perturbariam as medidas e também desenharam um detector, um interferômetro a laser, que superaria este ruído. No começo, tanto Kip S. Thorne quanto Rainer Weiss estavam firmemente convencidos de que as ondas gravitacionais podiam ser detectadas e provocavam uma revolução no nosso conhecimento do Universo.

"Antes nós víamos o Universo. Agora, nós começamos a ouvi-lo”, disse Thorne.

As ondas gravitacionais se espalham à velocidade da luz, preenchendo o Universo. Elas sempre são criadas quando uma massa acelera, como os rodopios de um patinador de gelo ou um par de buracos negros girando um em torno do outro. O físico Albert Einstein estava convencido de que nunca seria possível mensurá-las. A realização do projeto LIGO foi usar um par de interferômetros a laser gigantes para medir uma mudança milhares de vezes menor do que um núcleo atômico, quando a onda gravitacional passar pela Terra.

Apesar do importante papel dos três laureados na descoberta das ondas gravitacionais, as pesquisas tiveram participação de mais de mil cientistas de mais de vinte países, incluindo grupos brasileiros liderados por Odylio Aguilar, do Instituto Nacional de Pesquisas Espaciais (Inpe), e por Riccardo Sturani, do Centro Internacional de Física Teórica, da Universidade Estadual Paulista (Unesp).

O Instituto Karolinska anunciou em setembro um reajuste de 12% no valor dos prêmios Nobel, que permanecia o mesmo desde 2012: 8 milhões de coroas suecas, o equivalente a cerca de US$ 981 mil, ou R$ 3,1 milhões. Os vencedores de 2017 receberão 9 milhões de coroas, o que significa US$ 1,1 milhão, ou cerca de R$ 3,5 milhões.

Até agora, todos os tipos de radiação e partículas eletromagnéticas, como os raios cósmicos ou os neutrinos, foram utilizados para explorar o Universo. No entanto, as ondas gravitacionais são testemunho direto de interrupções no espaço-tempo. Isso é algo completamente novo e diferente, abrindo mundos invisíveis. Muitas descobertas prosperarão das ondas gravitacionais, propiciando interpretar suas mensagens.

Fonte: The Royal Swedish Academy of Sciences

sábado, 30 de setembro de 2017

Raios cósmicos têm origem extragaláctica

Pesquisadores participantes da colaboração Pierre Auger descobriram que, acima de um determinado nível de energia, estas partículas, que são as mais energéticas da natureza e atingem constantemente a atmosfera terrestre, têm origem extragaláctica.

cascatas de partículas geradas por raios cósmicos

© Pierre Auger (cascatas de partículas geradas por raios cósmicos)

A colaboração Pierre Auger, o maior observatório do mundo dedicado ao estudo e à detecção de raios cósmicos, está localizado na província de Mendoza, na Argentina. O observatório possui esta denominação em homenagem ao físico francês Pierre Auger (1899-1992).

“A chance de essa conclusão ser fruto do acaso é de dois em 100 milhões,” disse Carola Dobrigkeit Chinellato, professora do Instituto de Física Gleb Wataghin da Universidade Estadual de Campinas (IFGW-Unicamp) e presidente da comissão brasileira no Observatório Pierre Auger.

A partir de dados registrados pelo Observatório entre janeiro de 2004 e agosto de 2016, os pesquisadores observaram que raios cósmicos ultraenergéticos, acima de 8 x 1018 eV (elétrons-volts) chegam em maior número à Terra vindos de um lado do céu.

Esta região no céu de onde vêm mais raios cósmicos ultraenergéticos coincide com a localização de grande parte das galáxias vizinhas da Via Láctea, em um raio de até 700 mil anos-luz.

Esta é uma forte evidência de que os raios cósmicos de altas energias vêm de fora da Via Láctea.

De acordo com os pesquisadores participantes da colaboração, a descoberta contribui não apenas para entender a origem destas partículas ultraenergéticas, como também os mecanismos cósmicos capazes de imprimir tamanha energia a estas diminutas entidades subatômicas, que podem viajar a distâncias de trilhões de quilômetros (anos-luz) através do espaço e chegar à Terra carregando energias extremas.

Núcleos atômicos leves como o do hidrogênio ou pesados como o do ferro, os raios cósmicos chegam à Terra vindos do espaço, a todo instante.

O fluxo destas partículas subatômicas para a Terra, contudo, diminui abruptamente conforme a energia aumenta. As de energia acima de 1018 eV, denominadas ultraenergéticas, como a que os pesquisadores detectaram agora, aparecem na Terra com uma frequência de 1 partícula por quilômetro quadrado (km²) por ano.

Por este motivo, a origem e os mecanismos cósmicos de produção destes raios cósmicos ultraenergéticos, conhecidos há mais de 50 anos, continuam sendo um mistério.

A fim de identificar indícios da origem destas partículas subatômicas de mais alta energia, os pesquisadores membros da colaboração Pierre Auger têm estudado a distribuição de suas direções de chegada à Terra.

Ao atingirem a atmosfera terrestre, a cerca de 10 km a 20 km de altitude, os raios cósmicos ultraenergéticos colidem com núcleos atômicos do ar, como de nitrogênio e oxigênio.

Estas colisões geram centenas ou milhares de outras partículas que seguem rumo ao solo, quase à velocidade da luz (de cerca de 300 mil km por segundo), na forma de cascatas de partículas, chamadas de “chuveiro atmosférico extenso”.

As partículas carregadas no chuveiro excitam as moléculas de nitrogênio no ar, produzindo uma tênue luz azul, que é captada por telescópios de fluorescência do Observatório Pierre Auger durante noites claras.

As partículas também são registradas por 1.660 detectores de superfície do observatório. Espalhados por uma área de 3 mil km2, em uma região plana ao lado dos Andes, os detectores, que operam ininterruptamente, consistem em tanques de polietileno, preenchidos com 12 mil litros de água ultrapurificada e instrumentalizados com sensores fotomultiplicadores.

Quando as partículas de um chuveiro atmosférico atravessam a água no interior do tanque é emitida luz, chamada radiação Cherenkov, que pode ser medida nos sensores.

Com base na análise destes dois tipos de luz, entre outros dados, é possível extrair diversas informações sobre o raio cósmico (dito primário) que iniciou a cascata de partículas no alto da atmosfera.

Fonte: Science

domingo, 3 de setembro de 2017

Arapuca para detectar fótons

O Arapuca é um equipamento que está em análise e tem grande chance de ser adotado como um dos principais componentes do sistema de fotodetecção do Dune (Deep Underground Neutrino Experiment).

ilustração da interação neutrino e antineutrino

© Fermilab (ilustração da interação neutrino e antineutrino)

O Arapuca foi concebido para detecção de fótons pelos cientistas Ettore Segreto, professor do Instituto de Física Gleb Wataghin, da Universidade Estadual de Campinas (Unicamp) e Ana Amélia Bergamini Machado, professora do Centro de Ciências Naturais e Físicas, da Universidade Federal do ABC (UFABC).

O Arapuca é uma espécie de armadilha para capturar a luz. Um dos desafios para o sistema de fotodetecção do Dune é que os tanques de argônio onde deverão ocorrer as cintilações são muito grandes e os sensores de luz disponíveis são muito pequenos. Em particular, os sensores de silício que serão utilizados têm uma superfície coletora da ordem de apenas 1 cm². A função do Arapuca é aumentar a área de coleta e aprisionar os fótons coletados dentro de uma caixa, para disponibilizá-los aos sensores.

A interação das partículas geradas pelos neutrinos com o argônio líquido dos grandes tanques produz luz com comprimento de onda de 128 nanômetros. Por meio de um filtro, o comprimento de onda é modificado para 350 nanômetros. Como a janela do Arapuca é transparente para este comprimento de onda, os fótons conseguem entrar. Porém, uma vez lá dentro, um segundo filtro é usado para fazer o comprimento de onda retornar aos 128 nanômetros. E os fótons não conseguem sair, porque a janela é opaca para este comprimento de onda. Aprisionados, eles ficam ricocheteando nas paredes altamente reflexivas da caixa, até serem captados pelos sensores colocados no interior.

Estes filtros, chamados genericamente de deslocadores de comprimento de onda, são constituídos por materiais orgânicos (hidrocarbonetos policíclicos aromáticos) que absorvem fótons em uma banda de frequências e os reemitem em outra. No caso, serão utilizados o para-terfenilo e o tetrafenil butadieno. O Arapuca já foi incorporado ao sistema de fotodetecção do ProtoDune, um protótipo em grande escala do Dune, que está sendo construído e deverá entrar em operação no CERN (European Organization for Nuclear Research) em outubro de 2018. Responsáveis pelo sistema de fotodetecção do ProtoDune, Segreto e Machado encontram-se atualmente no CERN.

A função do ProtoDune é testar todas as soluções tecnológicas que serão utilizadas posteriormente no Dune. O teste não será feito com neutrinos, mas com um feixe de partículas eletricamente carregadas, produzidas por um dos aceleradores do CERN, e apontadas para um detector com cerca de mil toneladas de argônio líquido. Já o Dune utilizará, no total, 70 mil toneladas de argônio líquido, 40 mil das quais comporão o tanque de detecção propriamente dito.

Resumidamente, o acelerador do Fermilab produzirá o mais poderoso feixe de neutrinos já estudado. Este feixe será detectado duas vezes: primeiro, bem perto da fonte, no próprio Fermilab, no estado de Illinois; depois, a 1.300 quilômetros da fonte, no estado de South Dakota.

O segundo detector é o gigante preenchido por 70 toneladas de argônio, mantido em estado líquido por uma refrigeração a –184 ºC. O que ele registrará serão os chuveiros de partículas e luz produzidos quando os neutrinos superenergéticos arrancarem de suas órbitas elétrons dos átomos de argônio. Um dos principais alvos do Dune é comparar, por meio das duas detecções, os padrões de oscilação dos neutrinos e dos antineutrinos. Se estes padrões não forem rigorosamente simétricos, isso fornecerá uma prova concreta da “violação de simetria de carga-paridade” (CPV).

A CPV é um ingrediente fundamental do chamado modelo padrão. E explica por que um Universo que, no início, possuía quantidades idênticas de matéria e antimatéria se transformou em um Universo no qual a matéria é amplamente predominante. Se a composição tivesse se mantido rigorosamente simétrica, matéria e antimatéria teriam se aniquilado. Mas, de acordo com o modelo, a violação de simetria gerou um pequeno excedente de matéria em relação à antimatéria. E foi este excedente que resultou no Universo material.

Além da violação de simetria, os pesquisadores da colaboração internacional esperam poder registrar também, no gigantesco tanque de argônio, um outro fenômeno, que não depende dos neutrinos: o decaimento do próton, previsto pela teoria, porém jamais observado. Se isso ocorrer, e há grande expectativa de que ocorra, o experimento terá proporcionado uma prova empírica da capacidade preditiva de modelos supersimétricos que buscam unificar três das quatro interações conhecidas: eletromagnética, nuclear forte e nuclear fraca.

O terceiro alvo do experimento é o aprimoramento de modelos acerca da formação de estrelas de nêutrons e buracos negros, mediante a observação de neutrinos provenientes do colapso de supernovas.

Fonte: Fermilab

quinta-feira, 27 de julho de 2017

Como detectar ondas gravitacionais com hélio

As ondas gravitacionais de pulsares próximos poderiam ser detectadas usando apenas alguns quilogramas de hélio 4He superfluido, de acordo com físicos nos EUA.

pulsar Vela

© Chandra (pulsar Vela)

A imagem acima mostra a evolução temporal do vento do pulsar Vela observado na faixa de energia espectral de 0,5 a 8 keV.

Seu detector, que ainda não foi construído, poderia medir ondas sonoras no superfluido causadas por ondas gravitacionais na faixa de 0,1 a 1,5 kHz.

As ondas gravitacionais são ondulações no espaço-tempo que são criadas quando objetos massivos são acelerados sob certas condições. A primeira detecção de ondas gravitacionais foi feita em 2015, quando o observatório Laser Interferometer Gravitational-Wave Observatory (LIGO) detectou um sinal de um buraco negro binário coalescente. Mais duas ondas gravitacionais já foram detectadas pela LIGO, ambas associadas a buracos negros binários.

O LIGO é um detector de banda larga que pode captar sinais na faixa de 10 Hz a 5 kHz. É particularmente propício para detectar sinais transitórios associada aos buracos negros coalescentes.

Swati Singh do Williams College, Laura DeLorenzo e Keith Schwab do Caltech e Igor Pikovski da Universidade de Harvard querem construir um detector que possa se concentrar em uma banda de frequência relativamente estreita para detectar ondas gravitacionais de pulsares.

Um pulsar é uma estrela de nêutrons de rotação rápida que deverá transmitir continuamente ondas gravitacionais a uma frequência específica na faixa de 1 Hz a 1 kHz, com a frequência dependendo das características físicas do pulsar. Ao fazer uma medição de banda estreita durante um longo período de tempo, um sinal de ruído muito baixo de um pulsar poderia, em princípio, ser detectado.

Este detector compreende vários quilogramas de hélio superfluido mantido em um recipiente cilíndrico que é acoplado em um ressonador micro-ondas supercondutor. Confinamento no recipiente significa que o superfluido ressoará com ondas de som em determinadas frequências, assim como um instrumento musical.

Esta ressonância acústica também significa que o superfluido deve atuar como uma antena que é sintonizada para detectar ondas gravitacionais em frequências específicas. Quando tal onda gravitacional viaja através do detector, criaria um campo de tensão que produziria ondas sonoras no hélio. O ressonador de micro-ondas converteria essas ondas em um sinal mensurável.

Embora outros tenham tentado fazer estas antenas usando barras de metal, a equipe diz que o hélio superfluido oferece vários benefícios, incluindo o fato de que a frequência do detector pode ser alterada ajustando a pressão do hélio.

Calcula-se que usando a tecnologia de transdutor de micro-ondas de última geração, o detector poderia medir sinais de certos tipos de pulsares depois de alguns meses.

Fonte: New Journal of Physics

quarta-feira, 12 de julho de 2017

Forças de Van Der Waals se repelem?

As interações de Van Der Waals entre as moléculas estão entre as forças mais importantes na biologia, física e química, determinando as propriedades e o comportamento de muitos materiais.

forças Van der Waals entre átomos de xenônio e gás

© U. Basel (forças Van der Waals entre átomos de xenônio e gás)

Há muito tempo, os cientistas consideram que estas interações entre as moléculas seriam sempre de atração. Agora, pesquisadores Mainak Sadhukhan e Alexandre Tkatchenko da Universidade de Luxemburgo descobriram que, em muitas situações bastante comuns e na maioria das situações práticas, a força de Van der Waals entre duas moléculas torna-se repulsiva quando ocorrem sob confinamento. Isso pode levar a uma mudança de paradigma nas interações moleculares. 

A força de Van der Waals foi explicada pela primeira vez pelo físico alemão-americano Fritz Wolfgang London, em 1930. Usando a mecânica quântica, ele demonstrou a natureza puramente atrativa da força de Van der Waals para quaisquer duas moléculas que interagissem no espaço livre. Entretanto, na natureza, as moléculas na maioria dos casos interagem em espaços confinados, como células, membranas, nanotubos, etc. Nesta situação particular, as forças de Van der Waals tornam-se repulsivas a grandes distâncias entre moléculas.

Agora, Mainak Sadhukhan desenvolveu um novo método de mecânica quântica que lhes permitiu modelar as forças de Van der Waals em confinamento.

A nova teoria permite, pela primeira vez, uma interpretação de muitos fenômenos interessantes observados para moléculas em confinamento.

A descoberta deverá ter muitas implicações potenciais para a entrega de moléculas de fármacos on interior de células, a dessalinização, o transporte de água e automontagem de camadas moleculares em dispositivos fotovoltaicos.

O grupo de pesquisa do professor Tkatchenko está trabalhando em métodos que modelam as propriedades de uma ampla gama de interações intermoleculares. Somente em 2016, eles descobriram que a verdadeira natureza destas forças Van der Wals difere do conhecimento convencional em química e biologia, pois elas devem ser tratados como acoplamento entre as ondas e não como atração mútua (ou repulsão) entre as partículas. 

Um artigo sobre a descoberta foi publicado no periódico Physical Review Letters.

Fonte: University of Luxembourg

sexta-feira, 7 de julho de 2017

Uma nova partícula com dois quarks pesados

Hoje, na EPS Conferência sobre Física de Alta Energia em Veneza, o experimento do LHCb no Large Hadron Collider (LHC) do CERN relatou a observação de Ξcc++  (Xicc++) uma nova partícula contendo dois quarks charm e um quark up.

nova partícula com dois quarks pesados e um leve

© CERN (nova partícula com dois quarks pesados e um leve)

A existência desta partícula da família dos bárions era esperada pelas teorias atuais, mas os físicos têm procurado estes bárions com dois quarks pesados ​​por muitos anos. A massa da partícula recém-identificada é de cerca de 3,621 GeV, que é quase quatro vezes mais pesada que o bárion mais familiar, o próton, uma propriedade que surge de seu conteúdo de dois quarks charm. É a primeira vez que esta partícula foi detectada inequivocamente.

Quase toda a matéria que vemos ao nosso redor é feita de bárions, que são partículas comuns compostas por três quarks, os mais conhecidos sendo prótons e nêutrons. Mas existem seis tipos de quarks existentes, e teoricamente, muitas combinações potenciais diferentes podem formar outros tipos de bárions. Os bárions observados até agora são todos feitos, no máximo, com um quark pesado.

Encontrar um bárion de quark pesado é de grande interesse, pois proporcionará uma ferramenta única para investigar ainda mais a cromodinâmica quântica, a teoria que descreve a interação forte, uma das quatro forças fundamentais.

Em contraste com outros bárions, em que os três quarks oscilam um em torno do outro, espera-se que um bárion duplamente pesado atue como um sistema planetário, onde os dois quarks pesados ​​desempenham a função de estrelas pesadas orbitando uma em torno da outra, com o quark mais leve orbitando em torno deste sistema binário.

Medir as propriedades do Ξcc++ ajudará a estabelecer como um sistema de dois quarks pesados ​​e um quark leve se comporta. Podem ser obtidos pontos de vista importantes, medindo precisamente os mecanismos de produção, decaimento e a vida útil desta nova partícula.

A observação deste novo bárion provou ser desafiadora e foi possível devido à alta taxa de produção de quarks pesados ​​no LHC e às capacidades únicas do experimento LHCb, que pode identificar os produtos de decaimento com excelente eficiência. O bárion Ξcc++  foi identificado através de seu decaimento em um bárion Λc+ e três mésons mais leves K-, π+ e π+.

A observação do Ξcc++ no LHCb aumenta as expectativas para detectar outros representantes da família de bárions duplamente pesados. Eles serão agora procurados no LHC.

Um artigo relatando estas descobertas foi submetido ao periódico Physical Review Letters.

Fonte: European Organization for Nuclear Research

quarta-feira, 5 de julho de 2017

Incorporando flutuações quânticas na entropia

A termodinâmica clássica nasceu, na primeira metade do século XIX, no rastro da revolução industrial, voltada para a otimização de máquinas e focada no cálculo de grandezas como trabalho útil, energia dissipada e eficiência.

entrelaçamento quântico

© Revista Física (entrelaçamento quântico)

De acordo com a segunda lei da termodinâmica, a energia mecânica pode ser completamente convertida em energia térmica, mas a energia térmica não pode ser completamente convertida em energia mecânica. Dessa assimetria, que impõe um sentido aos processos materiais e por decorrência escoaria rumo a configurações de energia cada vez menos organizadas, surgiu o conceito de entropia com o físico alemão Rudolf Clausius, que se refere à parcela do calor que não pode mais ser transformada em trabalho, e, portanto, ao grau de irreversibilidade do sistema.

É possível estender os conceitos macroscópicos da termodinâmica à escala atômica ou subatômica? O que mudaria se fosse construído um motor com um único átomo? Como as leis termodinâmicas seriam afetadas pela mecânica quântica? Estas foram as cogitações que nortearam o estudo dos pesquisadores brasileiros Jader Pereira dos Santos (Universidade Federal do ABC), Gabriel Teixeira Landi (Universidade de São Paulo) e Mauro Paternostro (Queen’s University Belfast, Reino Unido). 

A aproximação da termodinâmica com a mecânica quântica é bem recente, algo das últimas décadas, quando se tornou possível exercer um controle muito fino na manipulação de átomos e, literalmente, construir motores em escala atômica. Apesar do estudo tratar de questões de física fundamental, de conhecimento puro, é possível visualizar diversas aplicações em sistemas microscópicos, como nanodispositivos, computação, criptografia e comunicação quânticas.

Os pesquisadores focalizaram especificamente na produção de entropia, isto é, da medida da irreversibilidade, em contextos quânticos, para a qual não havia, antes, uma teoria bem estabelecida. Existiam teorias muito boas para medir a irreversibilidade no contexto clássico, isto é, na escala macroscópica. Mas não existiam teorias que permitissem medir quão irreversível era um processo quântico. As teorias anteriores, propostas com tal objetivo, apresentavam várias lacunas, várias incompletudes. Isso se devia, basicamente, ao fato de terem sido concebidas para sistemas clássicos e não para sistemas quânticos.

Sabe-se, conforme a primeira lei da termodinâmica, que a energia de um sistema fechado é conservada. Mas, conforme a segunda lei da termodinâmica, a entropia tende sempre a aumentar. Isso porque a irreversibilidade faz com que, a cada transformação, a energia se reconfigure de forma menos organizada. Pode-se falar em degradação da energia e definir entropia como a medida desse aumento espontâneo da desordem.

O objetivo dos pesquisadores, com seu estudo puramente teórico, foi incorporar as contribuições quânticas ao processo. A ideia é que todo sistema apresenta, simultaneamente, dois tipos de flutuações: as flutuações térmicas, que advêm da agitação exterior das partículas, e as flutuações quânticas, que são um fenômeno intrínseco. Em altos patamares de energia, como aqueles obtidos em laboratório nos colisores de partículas, as flutuações quânticas são responsáveis pela criação e aniquilamento de pares de partículas e antipartículas. Mas tais flutuações ocorrem também em baixos patamares de energia, e, idealmente, até mesmo no zero absoluto. Nos processos macroscópicos, as flutuações térmicas são em geral mais importantes. Porém há situações em que as flutuações quânticas predominam e contribuem de forma mais significativa para a entropia.

A termodinâmica clássica trabalhou exclusivamente com as flutuações térmicas. Mas na escala atômica e subatômica, onde a física quântica se torna necessária para a descrição dos fenômenos, a desordem decorrente das flutuações quânticas precisa ser considerada e computada. Segundo a mecânica quântica, mesmo que um sistema se encontre em um estado ideal no qual não exista qualquer agitação térmica, ou seja, um estado definido como zero absoluto, ainda assim ele apresentará uma tendência implícita à desordem devido a flutuações quânticas, associadas ao Princípio da Incerteza, de Werner Heisenberg.

Segundo o Princípio da Incerteza, variáveis complementares, como por exemplo a posição e o momento linear, não podem ser determinadas de forma precisa ao mesmo tempo. A incerteza manifesta-se, por exemplo, na dualidade partícula-onda. Devido ao comportamento ondulatório, o objeto não pode ser perfeitamente localizado no espaço. E apresenta-se ao observador como que esparramado, podendo flutuar entre várias posições possíveis.

O Prêmio Nobel de Física de 1963, Eugene Wigner, apresentou uma interpretação probabilística da mecânica quântica. A chamada função de Wigner considera tanto as flutuações térmicas quanto as flutuações quânticas. Trabalhando com a função de Wigner, os pesquisadores conseguiram reformular a teoria de irreversibilidade, de modo a incorporar as flutuações quânticas ao conceito de entropia. Eles definiram a entropia como a desordem associada à distribuição estatística descrita pela função de Wigner. A partir dessa definição, a construção de uma nova teoria e sua aplicação a sistemas quânticos seguiu naturalmente.

A grande novidade foi que os resultados obtidos podem ser aplicados mesmo em sistemas a zero kelvin. Até o estudo em pauta, não havia repertório teórico capaz de explicar o efeito das flutuações quânticas no aumento da entropia no zero absoluto. Embora a temperatura zero nunca seja alcançada na prática, pode haver situações, inclusive em laboratório, de temperaturas suficientemente baixas, da ordem de alguns kelvins, nas quais as flutuações quânticas se tornem mais importantes do que as flutuações térmicas. Em sistemas de óptica quântica, envolvendo lasers, até mesmo em temperatura ambiente as flutuações quânticas podem ser dominantes.

O estudo possibilitará aplicações em comunicação, por meio de luz. A ideia é usar o conceito de irreversibilidade para quantificar perdas em processos de comunicação por fibra óptica. Além da perda de energia, existe também a perda de coerência da luz. O formalismo utilizado é capaz de dar conta de todos esses tipos de perda.

Outro foco de interesse é a propriedade do emaranhamento. O processo de emaranhamento ocorre quando pares ou grupos de partículas são gerados ou interagem de tal maneira que o estado quântico de cada partícula não pode mais ser descrito independentemente, já que depende do conjunto. A manutenção do emaranhamento é essencial para a computação quântica. Mas a interação do sistema com o ambiente produz perda de emaranhamento.

Fonte: Physical Review Letters