terça-feira, 3 de outubro de 2023

Captando os momentos mais curtos

Os três ganhadores do Nobel de Física 2023 estão sendo reconhecidos por seus experimentos no âmbito da física quântica, que deram à humanidade novas ferramentas para explorar o mundo dos elétrons dentro dos átomos e moléculas.

© Revista Física (nuvem eletrônica)

Pierre Agostini, Ferenc Krausz e Anne L’Huillier demonstraram uma maneira de criar pulsos de luz extremamente curtos que podem ser usados para medir os processos rápidos nos quais os elétrons se movem ou mudam de energia. 

Em 1987, a física francesa Anne L'Huillier, professora de Física Atômica na Universidade de Lund, Suécia, descobriu que quando a luz laser infravermelha era transmitida por meio de um gás nobre surgiam muitos tons diferentes de luz. Depois disso, a cientista continuou explorando o fenômeno, preparando a construção para descobertas posteriores. Ela é a quinta mulher a ganhar um Prêmio Nobel de Física, seguindo a Marie Curie (1903), Maria Goeppert-Mayer (1963), Donna Strickland (2018) e Andrea Ghez (2020). 

Já o franco-americano Pierre Agostini, professor da Universidade Estadual de Ohio, EUA, conseguiu em 2001 produzir e investigar uma série de pulsos de luz consecutivos, em que cada pulso durava apenas 250 attosegundos, inventando com a sua equipe o chamado RABBIT, ou seja, a reconstrução de batimentos de attossegundos por interferência de transições de dois fótons. 

Na mesma época, um experimento científico do húngaro Ferenc Krausz, professor da Ludwig-Maximilians-University Munique, Alemanha, possibilitou o isolamento de um único pulso de luz com duração de 650 attosegundos. 

As contribuições dos laureados permitiram a pesquisa de processos tão rápidos que antes eram impossíveis de acompanhar. Um pequeno colibri pode bater as asas 80 vezes por segundo. Só conseguimos perceber isso como um zumbido e movimento turvo. Para o sentidos humanos, movimentos rápidos se confundem, e eventos extremamente curtos são impossíveis de observar. Precisamos usar truques tecnológicos para capturar ou retratar esses breves instantes. Fotografia de alta velocidade e iluminação estroboscópica permite capturar imagens detalhadas de fenômenos rápidos. Uma fotografia altamente focada de um beija-flor em ação requer uma exposição tempo que é muito mais curto do que uma única batida de asas. Quanto mais rápido o evento, mais rápido a imagem precisa ser tomada se for para capturar o instante. 

O mesmo princípio se aplica a todos os métodos utilizados para medir ou representar processos rápidos; qualquer medida deve ser realizada mais rapidamente do que o tempo que leva para o sistema em estudo sofrer uma mudança perceptível, caso contrário o resultado será vago. 

Os laureados deste ano realizaram experiências que demonstram um método para produzir pulsos de luz que são breves o suficiente para capturar imagens de processos dentro dos átomos e moléculas. A escala de tempo natural dos átomos é incrivelmente curta. Em uma molécula, os átomos podem se mover e girar em femtosegundos (milionésimos de um bilionésimo de segundo). Esses movimentos podem ser estudados com o mais curto pulsos que podem ser produzidos com um laser, mas quando átomos inteiros se movem a escala de tempo é determinada por seus núcleos grandes e pesados, que são extremamente lentos em comparação com elétrons leves e ágeis. Quando os elétrons se movem dentro de átomos ou moléculas, eles fazem isso tão rapidamente que as mudanças ficam próximas de um femtosegundo. 

No mundo dos elétrons, as posições e as energias mudam a velocidades entre um e algumas centenas de attosegundos (bilionésimo de bilionésimo de segundo). Um attosegundo é tão curto que o número deles em um segundo é igual ao número de segundos que se passaram desde que o Universo surgiu, 13,8 bilhões de anos atrás. Um femtosegundo foi considerado por muito tempo o limite para os flashes de luz que era possível produzir. Melhorar a tecnologia existente não foi suficiente para ver os processos ocorrendo em um período surpreendentemente breve em escalas de tempo de elétrons; algo inteiramente novo era necessário. 

A luz consiste em ondas, ou seja, vibrações em campos elétricos e magnéticos, que se movem através do vácuo mais rápido do que qualquer outra coisa. Estes têm comprimentos de onda diferentes, equivalentes a cores diferentes. Por exemplo, a luz vermelha tem um comprimento de onda de cerca de 700  nm (nanômetros), um centésimo da largura de um fio de cabelo, e ele circula cerca de 430 trilhões de vezes por segundo. Podemos pensar em o pulso de luz mais curto possível como a duração de um único período na onda de luz, o ciclo onde ele sobe até um pico, desce até um vale e volta ao ponto inicial. Neste caso, os comprimentos de onda usados em sistemas de laser comuns nunca conseguem chegar abaixo de um femtosegundo, então na década de 1980 isso foi considerado como um limite rígido para as emissões de luz mais curtas possíveis. 

No experimento projetado, quando a luz do laser entra no gás e afeta seus átomos, causa vibrações eletromagnéticas que distorcem o campo elétrico que mantém os elétrons ao redor do núcleo atômico. Os elétrons podem então escapar dos átomos. No entanto, o campo elétrico da luz vibra continuamente e, quando ele muda de direção, um elétron solto pode retornar ao núcleo do seu átomo. Durante excursão do elétron, ele coletou muita energia extra do campo elétrico da luz laser e, para reconectar ao núcleo, ele deve liberar seu excesso de energia como um pulso de luz, no caso, no ultravioleta. Esses pulsos de luz dos elétrons criam as conotações que aparecem nos experimentos. 

Pulsos de attossegundos permitem medir o tempo que leva para um elétron ser puxado de um átomo, e examinar como o tempo que isso leva depende de quão fortemente o elétron está ligado ao núcleo do átomo. É possível reconstruir como a distribuição de elétrons oscila posicionalmente em moléculas e materiais; anteriormente a sua posição só poderia ser medida como uma média. 

Estes pulsos podem ser usados para testar os processos internos da matéria e para identificar diferentes eventos. Existem aplicações potenciais em muitas áreas diferentes. Na eletrônica, por exemplo, é importante compreender e controlar como os elétrons se comportam em um material. Eles também podem ser usados para identificar diferentes moléculas, como em diagnósticos médicos, possibilitando nova técnica analítica de diagnóstico in vitro para detectar traços moleculares característicos de doenças em amostras de sangue.

O Prêmio Nobel da Física deste ano abre janelas que antes eram inimaginável para Heisenberg, explorar fenômenos que antes eram impossíveis de observar.

Fonte: Royal Swedish Academy of Sciences

Nenhum comentário:

Postar um comentário