terça-feira, 5 de outubro de 2021

Nobel de Física: Clima e Sistemas Complexos

O prêmio Nobel de Física de 2021 foi concedido para pesquisa de sistemas complexos, especialmente para predição do aquecimento global.

© Johan Jarnestad (ilustração da influência climática na Terra)

A Academia Real das Ciências da Suécia anunciou os ganhadores Syukuro Manabe, da Universidade de Princeton, EUA, Klaus Hasselmann, do Instituto Max Planck para Meteorologia, Alemanha, e Giorgio Parisi, da Universidade de Roma, Itália.

Syukuro Manabe e Klaus Hasselmann estabeleceram a base de nosso conhecimento sobre o clima da Terra e como a humanidade o influencia. Giorgio Parisi é recompensado por suas contribuições revolucionárias à teoria de materiais desordenados e processos aleatórios. 

Os sistemas complexos são caracterizados pela aleatoriedade e desordem e são difíceis de entender. O prêmio deste ano reconhece novos métodos para descrevê-los e prever seu comportamento a longo prazo. Um sistema complexo de vital importância para a humanidade é o clima da Terra. 

Syukuro Manabe demonstrou como o aumento dos níveis de dióxido de carbono na atmosfera leva ao aumento da temperatura na superfície da Terra. Na década de 1960, ele liderou o desenvolvimento de modelos físicos do clima da Terra e foi a primeira pessoa a explorar a interação entre o balanço de radiação e o transporte vertical de massas de ar. Seu trabalho lançou as bases para o desenvolvimento dos modelos climáticos atuais. 

Cerca de dez anos depois, Klaus Hasselmann criou um modelo que liga o tempo e o clima, demonstrando que os modelos climáticos podem ser confiáveis apesar do tempo ser mutável e caótico. Ele também desenvolveu métodos para identificar sinais específicos, impressões digitais, que os fenômenos naturais e as atividades humanas imprimem no clima. Seus métodos têm sido usados para provar que o aumento da temperatura na atmosfera é devido às emissões humanas de dióxido de carbono.

Duzentos anos atrás, o físico francês Joseph Fourier estudou o equilíbrio de energia entre a radiação do Sol em direção ao solo e a radiação emanada do solo. Ele entendeu a função da atmosfera neste equilíbrio; na superfície da Terra, a radiação solar incidente é transformada em radiação de corpo negro que é absorvida pela atmosfera, aquecendo-a. A atmosfera bloqueia esta radiação, caracterizando o efeito estufa. Este nome vem de sua semelhança com o vidro numa estufa, que permitem passar os raios solares, mas retêm o calor no interior, gerando aquecimento. 

No entanto, os processos radioativos na atmosfera são muito mais complicados. A tarefa é investigar o equilíbrio entre a radiação solar de onda curta vinda em direção ao nosso planeta e a radiação infravermelha de onda longa emitida da Terra. Os detalhes foram acrescentados por muitos cientistas do clima nos dois séculos seguintes. Os modelos climáticos contemporâneos são ferramentas incrivelmente poderosas, não só para compreender o clima, mas também para entender o aquecimento global pelo qual os humanos são responsáveis. Estes modelos são baseados nas leis da física e propriedades estatísticas, que foram desenvolvidos para prever o tempo, que é descrito por quantidades meteorológicas, como temperatura, precipitação, vento ou nuvens, e é afetado pelo que acontece nos oceanos e no solo. 

Os estudos modernos de sistemas complexos estão enraizados na mecânica estatística desenvolvida na segunda metade do século 19 por James C. Maxwell, Ludwig Boltzmann e J. Willard Gibbs, que nomeou este campo em 1884. A mecânica estatística evoluiu a partir de um novo tipo de método necessário para descrever sistemas, como gases ou líquidos, que consistem em um grande número de partículas. Este método teve que considerar os movimentos aleatórios das partículas, então a ideia básica era calcular o efeito médio das partículas em vez de estudar cada partícula individualmente. Por exemplo, a temperatura em um gás é uma medida do valor médio da energia das partículas do gás. 

A mecânica estatística fornece uma explicação microscópica para propriedades macroscópicas em gases e líquidos, como temperatura e pressão. As partículas em um gás podem ser consideradas como pequenas bolas se deslocando em velocidades que aumentam com a temperatura. Quando a temperatura cai ou a pressão aumenta, as bolas primeiro se condensam em um líquido e então em um sólido, que geralmente é um cristal. No entanto, se esta mudança acontecer rapidamente, as bolas podem formar um padrão irregular que não mude mesmo se o líquido for resfriado ou comprimido. Se o experimento for repetido, as bolas assumirão um novo padrão, apesar da mudança acontecer exatamente da mesma maneira. Por que os resultados são diferentes?

Por volta de 1980, Giorgio Parisi descobriu padrões ocultos em materiais complexos desordenados. Suas descobertas estão entre as contribuições mais importantes para a teoria dos sistemas complexos, da interação entre desordens e flutuações em sistemas físicos, de escalas atômicas até planetárias. Eles tornam possível compreender e descrever muitos materiais e fenômenos diferentes e aparentemente inteiramente aleatórios, não apenas na física, mas também em outras áreas muito diferentes, como matemática, biologia, neurociência e aprendizado de máquina. 

“As descobertas reconhecidas este ano demonstram que o nosso conhecimento sobre o clima assenta numa base científica sólida, baseada numa análise rigorosa das observações. Todos os laureados deste ano contribuíram para que obtivéssemos uma visão mais profunda das propriedades e da evolução de sistemas físicos complexos”, disse Thors Hans Hansson, presidente do Comitê Nobel de Física.

Fonte: Royal Swedish Academy of Sciences

Nenhum comentário:

Postar um comentário