Foi descoberta uma maneira de usar a luz ultravioleta para produzir raios X.
© H. Kapteyn/M. Murnane/JILA (laser infravermelho e ultravioleta)
A imagem acima mostra lasers infravermelhos gerando pulsos longos (em cima) e lasers ultravioletas (embaixo) gerando pulsos de raios X muito curtos.
Esta técnica proporciona a melhoria no desempenho dos equipamentos de imageamento médico, além de permitir avanços nos estudos fundamentais de materiais.
Atualmente, os pulsos de laser mais curtos que se consegue gerar são produzidos por um processo denominado geração de harmônicos (HHG: high harmonic generation), que usa um pulso gerador longo para arrancar elétrons de átomos gasosos; quando estes elétrons retornam, é produzida luz com comprimentos de onda mais curtos, ou seja, um pulso menor. A chamada correspondência de fase, quando estes pulsos são alinhados com os raios X emitidos, é útil para várias aplicações, como o imageamento por difração.
No entanto, a correspondência de fase funciona melhor com comprimentos de onda mais longos, gerados por lasers na faixa do infravermelho médio, por exemplo, e apenas com níveis específicos de átomos ionizados.
Dimitar Popmintchev e seus colegas superaram essas limitações usando um sistema de geração de harmônicos que usa lasers ultravioleta em comprimentos de onda capazes de estimular feixes luminosos na região mais baixa do espectro de raios X.
O processo de alta geração harmônica em gases foi descoberto usando lasers ultravioleta quase 28 anos atrás. Mas, porque os cientistas daquela época não entendiam plenamente como fazer este processo eficiente, a atenção voltou-se para usar lasers de longo comprimento de onda para HHG. Na verdade, há muitos anos, a maioria dos cientistas acreditava que a produção de harmônicos de raios X moles com lasers ultravioleta seria impossível.
Em um efeito surpreendente, a refração dos raios ultravioleta, tanto nos átomos neutros como nos íons, permitiu obter um acoplamento de fase eficaz, o que por sua vez permite trabalhar em cenários mais complexos, incluindo plasmas com diferentes níveis de ionização, e não mais os níveis bem definidos exigidos pelas técnicas anteriores.
Esta nova técnica pode produzir harmônicos com fótons de até 280 eV (elétron-volts de energia); as técnicas anteriores, usando lasers infravermelhos, só chegavam a essa energia sob pressões muito baixas.
O grupo de cientistas está usando a luz ultravioeta gerado por laser harmônicos para investigar nanomateriais através de imageamento por difração. Em breve, os pesquisadores esperam produzir luz de comprimento de onda mais curto, que lhes permitirão uma resolução espacial mais elevada para analisar materiais biológicos como o DNA, RNA, proteínas e vírus.
Fonte: Science
Nenhum comentário:
Postar um comentário