Os primeiros resultados do experimento LUX (Large Underground Xenon) foram nulos, indicando que a matéria escura que se acredita compor uma grande parte do Universo é ainda mais elusiva do que acreditavam muitos especialistas.
© Laboratório Sanford (o Grande Detector Subterrâneo de Xenônio)
Enterrado a cerca de 1,5 km de profundidade em uma mina de ouro reformada na Dakota do Sul, que atualmente é a Instalação de Pesquisa Subterrânea Sanford, o experimento LUX procura sinais de partículas de matéria escura colidindo com os átomos em um tanque de xenônio líquido. Durante seus primeiros três meses de operação o detector não encontrou qualquer tipo de sinal. “Nós procuramos muito por essas partículas de matéria escura e não vimos nada”, declara o físico Rick Gaitskell da Brown University.
Os resultados eliminam várias massas e características possíveis para as partículas que compõem a matéria escura, e também conflita com experimentos anteriores que relataram possíveis sinais de matéria escura.
Cerca de um quarto do Universo parece ser composto de matéria escura, que faz sua presença ser sentida através da gravidade, apesar de não poder ser vista ou tocada. Uma das principais explicações da matéria escura postula que ela é composta de partículas chamadas de WIMPs (Partículas Massivas de Interação Fraca, em inglês). Se existirem, um bilhão dessas WIMPs provavelmente atravessam seu corpo a cada segundo sem que seus átomos percebam. A reticência dessas partículas em interagir com a matéria conhecida apresenta um desafio a físicos que pretendem detectar a matéria escura. Hipóteses sugerem, porém, que em situações muito raras WIMPs devam se chocar com átomos convencionais em vez de passarem pelo espaço entre eles.
Pesquisadores do LUX esperam captar esses impactos escassos ao medir fótons emitidos por um átomo de xenônio que for atingido por matéria escura. Para reduzir as chances de qualquer outra coisa fazer o xenônio emitir luz, como partículas espaciais carregadas, chamadas de raios cósmicos, o detector fica altamente protegido e enterrado no fundo da mina. Em termos de radioatividade de fundo, os raios cósmicos e outros contaminantes, o centro do tanque do LUX, 368 kg de xenônio líquido resfriado a -150°C, é o lugar mais silencioso do mundo.
O experimento é duas vezes mais sensível a partículas hipotéticas de matéria escura com grandes massas que outros detectores, e é ainda melhor se as partículas de matéria escura forem relativamente leves. O fato de o LUX ainda não ter registrado nenhum impacto desse tipo indica que as partículas no espectro de massa a que ele é sensível, entre 5 e 10 mil vezes a massa de um próton, interagem de maneira extremamente rara com a matéria comum. A massa do próton é cerca de 0,94 GeV, enquanto que a massa do bóson de Higgs é da ordem de 125 GeV.
Os novos resultados do LUX também lançam dúvidas sobre alegações anteriores de possível detecção de matéria escura. O projeto italiano DAMA (DArk MAtter) alegou ter observado sinais de WIMPs há mais de uma década, e mais recentemente o CDMS (Cryogenic Dark Matter Search) e o experimento CoGeNT (Coherent Germanium Neutrino Technology), ambos em Minnesota, observaram alguns eventos que podem ser atribuíveis à matéria escura.
Juan Collar da University of Chicago, que dirige o projeto CoGeNT, declara acreditar que a equipe do LUX não levou adequadamente em conta efeitos de campo elétrico e que, portanto, podem ter subestimado a sensibilidade do detector de xenônio para WIMPs de pouca massa.
Blas Cabrera da Stanford University, que dirige o projeto CDMS, também sustenta que o que seu projeto observou ainda pode ser matéria escura. “É improvável que o LUX tenha descartado toda a região de interesse para WIMPs de pouca massa, porque o xenônio não é tão sensível quanto outros materiais à matéria escura nesse espectro de massa”, aponta ele. (O CDMS usa detectores de silício e de germânio).
A competição é acirrada para descobrir qual será o primeiro experimento a encontrar matéria escura. O LUX é o experimento mais recente em uma série de buscas que estão em andamento há mais de três décadas, e nenhuma delas encontrou evidências conclusivas de matéria escura. O LUX continua a coletar dados, e os pesquisadores já estão planejando um detector de xenônio ainda maior, chamado de LUX-ZEPLIN.
Os cientistas esperam produzir as WIMPs ou outras evidências de "supersimetria" no Grande Colisor de Hádrons (LHC), instalado na Organização Europeia para a Pesquisa Nuclear (CERN), na fronteira da Suíça com a França; hoje, porém, o LHC está fechado para manutenção, o que deve durar até 2015. Até agora, ninguém viu uma única WIMP no espaço ou no subsolo.
Um artigo foi submetido para publicação à Physical Review Letters.
Fonte: Scientific American
Nenhum comentário:
Postar um comentário