terça-feira, 5 de janeiro de 2016

Desordem irreversível no mundo dos átomos

Físicos brasileiros e europeus demonstraram, pela primeira vez, que um minúsculo núcleo atômico também sofre um fenômeno comum, bem conhecido dos seres humanos: os efeitos irreversíveis da passagem do tempo.

entropia da quebra de um copo

© Revista Física (entropia da quebra de um copo)

Usando equipamentos de um laboratório no Centro Brasileiro de Pesquisas Físicas (CBPF), no Rio de Janeiro, eles registraram um aumento irreversível no grau de desordem no interior de um átomo do elemento químico carbono.

Em física, o grau de desordem é medido por uma grandeza chamada entropia, que quase sempre é crescente nos fenômenos do mundo macroscópico, no máximo ela se mantém estável, mas nunca diminui em um sistema dito isolado. Uma das consequências de a entropia sempre aumentar é que, quanto maior a desordem, mais difícil se torna reverter um fenômeno perfeitamente. “Não é possível desfazer a mistura entre o café e o leite depois de misturá-los, por exemplo”, diz o físico Roberto Serra, pesquisador da Universidade Federal do ABC (UFABC) e integrante da equipe que fez os experimentos no CBPF.

Isso acontece porque o café e o leite, e tudo o mais no mundo macroscópico, são feitos de quantidades absurdamente elevadas de átomos se movimentando das maneiras as mais variadas possíveis, a maioria delas aleatórias e incontroláveis. Ante número tão elevado de combinações possíveis, até existe a probabilidade de os átomos de café se separarem dos de leite, mas ela é próxima a zero. É também por isso que não se veem os pedaços de uma taça de vinho que se parte voltarem a se unir espontaneamente.

No dia a dia, os seres humanos associam a irreversibilidade desses fenômenos à passagem do tempo e às noções de passado e futuro. Em condições normais, café e leite só existem separados antes de se misturarem e um prato perfeitamente íntegro só existe antes de se quebrar. A noção de irreversibilidade levou o astrônomo e matemático inglês Arthur Eddington a afirmar em 1928, no livro A natureza do mundo físico, que a única seta do tempo conhecida pela física era o aumento da entropia no Universo, determinado pela segunda lei da termodinâmica, a única lei irreversível da física. O conceito de seta do tempo expressa a ideia de que a passagem do tempo ocorre num sentido preferencial: do passado para o futuro.

“Embora a percepção de que o tempo não para e caminha sempre para o futuro seja óbvia em nossa experiência cotidiana, isso não é trivial do ponto de vista da física”, diz Serra. Essa dificuldade ocorre porque as leis que regem a natureza no nível microscópico são simétricas no tempo, ou seja, reversíveis. Isso significa que não haveria diferença entre ir do passado para o futuro e vice-versa.

Muitos físicos pensavam que o aumento da entropia pudesse ser um fenômeno exclusivo do mundo macroscópico porque no século XIX o físico austríaco  Ludwig Boltzmann explicou a segunda lei da termodinâmica pelos movimentos de um número elevado de átomos. Há 60 anos, porém, muitos pesquisadores trabalham para ampliar a teoria de Boltzmann para sistemas feitos de poucos ou mesmo um só átomo. E teorias atuais já estabelecem que uma única partícula deve obedecer à segunda lei da termodinâmica.

A equipe de Serra foi a primeira a medir variações de entropia em um sistema tão pequeno que só podia ser descrito pelas leis da mecânica quântica, que regem o mundo submicroscópico. O físico Tiago Batalhão, aluno de doutorado de Serra na UFABC e atualmente em um estágio de pesquisa na Áustria, realiza desde 2014 experimentos em parceria com Alexandre Souza, Roberto Sarthour e Ivan Oliveira, do CBPF, além de Mauro Paternostro, da Queen’s University, na Irlanda, e Eric Lutz, da Universidade de Erlangen-Nuremberg, na Alemanha.

Os experimentos usam campos eletromagnéticos para manipular os núcleos de átomos de carbono de uma solução de clorofórmio. Os núcleos possuem uma propriedade chamada spin, que funciona como a agulha de uma bússola e aponta para cima ou para baixo, cada sentido com uma energia diferente. Os testes começavam com os spins dos trilhões de núcleos apontando em alguma direção, a maioria para cima e uma fração para baixo, dependendo da temperatura. Em seguida, disparava-se um pulso de ondas de rádio no tubo com clorofórmio. Com duração de um microssegundo, o pulso era curto demais para que cada núcleo interagisse com os vizinhos ou o ambiente. Assim, o pulso afetava cada núcleo isoladamente. “É como se cada um deles estivesse isolado do resto do Universo”, explica Serra.

Formado por ondas cuja amplitude aumentava no tempo, o primeiro pulso perturbava os spins de cada núcleo, que flutuavam rapidamente e mudavam de direção. Após algum tempo, os pesquisadores disparavam um segundo pulso, idêntico ao primeiro em quase tudo, exceto pelo fato de a amplitude de suas ondas decrescer com o tempo. Com o segundo pulso, que representava uma versão do primeiro pulso invertida no tempo, esperava-se fazer o spin de cada núcleo retornar ao estado inicial. De fato, os spins retornaram a um estado bem próximo ao do início. Mas, medidas precisas mostraram que os estados final e inicial não eram iguais. Havia uma discrepância decorrente das transições entre os diferentes estados de energia dos spins, associadas à entropia produzida no processo de aumentar e diminuir a amplitude das ondas.

Vlatko Vedral, físico da Universidade de Oxford, Reino Unido, que faz experimentos semelhantes usando laser, considera o trabalho uma bela demonstração do que a termodinâmica quântica prevê. Ele diz que gostaria de saber se a entropia medida na escala subatômica é produzida por fenômenos descritos pelas leis da física ou se uma parte decorre de algum fenômeno desconhecido atuando sobre  a seta do tempo.

Um artigo foi publicado no periódico Physical Review Letters.

Fonte: FAPESP (Pesquisa)

sexta-feira, 1 de janeiro de 2016

Achado novo bóson mais pesado que o Higgs?

Os dois experimentos que descobriram o Bóson de Higgs em 2012 sentiram uma intrigante possibilidade de uma nova partícula elementar.

pares de fótons produzidos pelo novo bóson

© CERN/CMS (pares de fótons produzidos pelo novo bóson)

Os pares de fótons (verde) produzidos em colisões no Large Hadron Collider (LHC) sugerem a existência de um Higgs com uma massa de 750 GeV (giga elétron-volts).

Ambas as colaborações anunciaram suas observações em 15 de Dezembro, quando publicaram os primeiros resultados significantes.

Os detectores CMS e ATLAs do LHC nos arredores de Geneva, Suíça, observaram em restos de colisões de próton-próton um excesso inesperado de pares de fótons carregando em torno de 750 GeV de energia combinados. Isso poderia ser o sinal da história de uma nova partícula, também um bóson, mas não necessariamente similar ao de Higgs, decaindo em dois fótons de energia equivalente. Seria em torno de quatro vezes mais massivo do que a próxima partícula mais pesada descoberta até então, o quark top, e seis vezes mais massiva que o Higgs.

Em cada caso, a significância estatística era bem pequena. Marumi Kado, do Linear Accelerator Laboratory na Universidade de Paris-Sud, disse que o seu experimento, ATLAS, viu em torno de 40 pares de fótons acima do número esperado do modelo padrão de partículas da física; Jim Olsen da Universidade de Princeton, Nova Jersey, reportou que o CMS viu apenas dez. Nenhum deles teria sequer mencionado o excesso caso os outros experimentos não tivessem visto pistas quase que idênticas.

“É um pouco intrigante. Mas pode ocorrer por coincidência,” diz o representante do ATLAS Dave Charlton, da Universidade de Birmingham, Reino Unido.

Em física de partículas, tropeços estatísticos como esse vem e vão todo o tempo. Se isso acabar sendo uma partícula real, seria “uma mudança completa no jogo”, diz Gian Francesco Fiudice, um teórico do CERN, que não é membro nem do ATLAS nem do CMS. Físicos experimentais passaram décadas validando o modelo padrão, e o Higgs era a última peça faltante no quebra-cabeça. Uma partícula mais pesada abriria um capítulo inteiramente novo no campo. Tiziano Camporesi, um físico no CERN que representa o CMS, diz que não sabe o que concluir com os dados até então. A diferença apareceu conforme a equipe do CMS procurava por uma partícula não relacionada chamada de gráviton.

Maxim Perelstein, um físico teórico do campo de partículas na Universidade de Cornell em Ithaca, Nova Iorque, diz que apesar de que um bóson de 750 GeV não é o que os físicos do LHC tem procurado, teóricos não necessariamente o consideraria como exótico. Por exemplo, poderia ser uma partícula similar a Higgs, apenas mais pesada. “Eu não iria achar isso uma grande surpresa caso venha a ser verdade,” diz Perelstein.

Enquanto isto, buscas por partículas previstas pela supersimetria, extensão favorita dos físicos para o modelo padrão, continuam sem encontrar nada. Para o físico teórico Michael Peskin, do Acelerador Nacional SLAC em Menlo Park, California, a parte mais relevante da discussão trata da falha em encontrar a partícula supersimétrica gluino no alcance de massas possíveis até 1.600 GeV. Isto força a supersimetria perto de um ponto onde muitos físicos talvez desistam dela, diz Peskin.

Em relação aos dois fótons, Camporesi diz que em 2016 o LHC deve estabelecer conclusivamente se os dados foram apenas outro tropeço estatístico ou uma nova partícula. Vai ser a maior prioridade para a próxima rodada de coleta de dados, marcada para começar em março, diz ele. “Se existe um fenômeno natural por trás das flutuações, nós saberemos,” conclui Camporesi.

Charlton concorda: “Nós esperamos dez vezes mais dados no próximo ano, o que deve ajudar a resolver essa questão, mas provavelmente irá criar outras novas!”

Fonte: Nature