sábado, 15 de fevereiro de 2014

Experimento NOvA vê os primeiros neutrinos

Cientistas do experimento NOvA anunciaram que foram captados os seus primeiros neutrinos.

aglomerado de galáxias RDCS 1252.9-2927

© ESO/P.Rosati (aglomerado de galáxias RDCS 1252.9-2927)

O experimento NOvA [NuMI (Neutrinos at the Main Injector) Off-Axis νe Appearance] é composto por dois grandes detectores de partículas situados a 500 quilômetros de distância, e seu trabalho é explorar as propriedades de um intenso feixe de partículas fantasmagóricas chamadas neutrinos. Os neutrinos são abundantes na natureza, mas eles raramente interagem com outra matéria. Estudá-los pode render informações cruciais sobre os primeiros momentos do Universo.

Diferentes tipos de neutrinos têm massas diferentes, mas os cientistas não sabem como essas massas se diferem um do outro. O objetivo do experimento NOvA é determinar a ordem das massas dos neutrinos, conhecida como a hierarquia de massa, que vai ajudar os cientistas a estreitar sua lista de possíveis teorias sobre a função dos neutrinos.
Bilhões dessas partículas são enviadas à Terra a cada dois segundos, atingindo os detectores de massa. Uma vez que a experiência é totalmente operacional, os cientistas vão identificar poucos deles a cada dia.

Os neutrinos são partículas curiosas. Elas têm três tipos, chamados de sabores, e mudam entre eles quando eles viajam. Os dois detectores do experimento NOvA estão colocados tão distantes para propiciar aos neutrinos o tempo de oscilar de um sabor para outro durante a viagem, quase à velocidade da luz.

Os cientistas geraram um feixe de partículas para o experimento NOvA usando um dos maiores aceleradores do mundo, localizado no Departamento de Energia do Fermi National Accelerator Laboratory, em Chicago. O feixe está direcionado para os dois detectores de partículas, um perto da fonte do Fermilab e o outro no rio Ash, em Minnesota, perto da fronteira com o Canadá. O detector no rio Ash é operado pela Universidade de Minnesota sob um acordo de cooperação com o Departamento de Energia.

Depois de concluído, os detectores próximos e distantes do NOvA vai pesar entre 300 e 14.000 toneladas, respectivamente.

"Os primeiros neutrinos significa que nós estamos no nosso caminho", disse o físico Gary Feldman da Universidade Harvard que participa do experimento desde o início. "Começamos a mais de 10 anos atrás a elaboração da criação desta experiência, por isso estamos ansiosos para obter resultados."

A colaboração NOvA é composta por 208 cientistas de 38 instituições nos Estados Unidos, Brasil, República Checa, Grécia, Índia, Rússia e Reino Unido. O experimento NOvA está programado para ser executado por seis anos.

Dedido o fato de os neutrinos interagirem com a matéria tão raramente, os cientistas esperam capturar apenas cerca de 5.000 neutrinos ou antineutrinos durante esse tempo. Os cientistas podem estudar o momento, a direção e a energia das partículas que interagem em seus detectores para determinar se eles vieram do Fermilab ou de outro lugar.

O Fermilab cria um feixe de neutrinos por colisão de prótons em um alvo de grafite, que libera uma variedade de partículas. São utilizados ímãs para orientar as partículas carregadas que emergem a partir da energia de colisão num feixe. Algumas dessas partículas decaem em neutrinos, e após são filtrados os não-neutrinos do feixe.

A imagem no topo mostra o aglomerado de galáxias RDCS 1252.9-2927 no Universo primordial, que se situa a cerca de 8,5 bilhões de anos-luz. Ele existia no momento em que o Universo tinha menos de 5 bilhões de anos. A imagem colorida composta do aglomerado de galáxias mostra a luz em raio X (roxo) a partir do gás com temperatura de 70 milhões de graus Celsius, e no óptico (vermelho, amarelo e verde) a luz das galáxias no aglomerado. Dados de raios X do Chandra e do XMM-Newton mostram que este aglomerado foi totalmente formado a mais de 8 bilhões de anos atrás. A massa medida de mais de 200 trilhões de sóis torna este aglomerado de galáxias o objeto de maior massa já encontrado quando o Universo era muito jovem. A abundância que os aglomerados cde galáxias apresentam são consistentes com a ideia de que a maioria dos elementos pesados ​​foram sintetizados no início da formação de estrelas de grande massa, mas as teorias atuais sugerem que um grupo tão grande deve ser raro no Universo primitivo.

Fonte: Fermi National Accelerator Laboratory

sexta-feira, 14 de fevereiro de 2014

Avanço nas pesquisas sobre fusão nuclear

Cientistas anunciaram esta semana um importante avanço na longa busca do desenvolvimento da fusão nuclear, o que para alguns representa o sonho de uma fonte de energia limpa e ilimitada.

cápsula que contém combustível para a fusão nuclear

© LLN (cápsula que contém combustível para a fusão nuclear)

Presente no Sol e em muitas outras estrelas, a fusão implica na liberação de energia por meio da união de núcleos atômicos, diferentemente da provocada pela fissão nuclear, princípio físico da bomba atômica e da energia nuclear usada atualmente nas usinas, que envolve a quebra do núcleo dos átomos.

Décadas de trabalho sobre a fusão tentaram superar um obstáculo gigantesco: a enorme quantidade de energia necessária para desencadear o processo. No entanto, experiências de laboratório, descritas atualmente por um grupo de cientistas nos Estados Unidos, permitiram fazer grandes avanços na superação desses obstáculos.

Os cientistas americanos afirmaram ter sido os primeiros a obter mais energia de uma reação de fusão do que a absorvida pelo combustível usado para provocá-la.

Eles fixaram 192 feixes de laser na direção de um ponto mais estreito do que a largura de um cabelo humano para gerar energia suficiente para comprimir uma minúscula cápsula de combustível a um tamanho 35 vezes menor que o original.

Com duração de menos de um bilionésimo de segundo, a reação liberou energia equivalente à armazenada em duas baterias AA (17 mil Joules) na última experiência realizada em novembro de 2013.

Apesar de modesta, a liberação de energia foi maior do que a energia absorvida pelo combustível, estimada entre 9 mil e 12 mil Joules.

"Isto é o mais próximo que se chegou" do sonho de gerar energia viável resultante de uma fusão, disse Omar Hurricane, chefe da equipe que realizou o estudo na estatal National Ignition Facility (NIF), da Califórnia.

A energia é dez vezes superior à alcançada anteriormente, embora haja alguns obstáculos. Não se trata de uma reação sustentada, o tão buscado momento de "ignição", e a pergunta sobre a eficiência energética, ou seja, a liberação de uma energia superior à consumida para lançar o processo, permanece sem resposta.

Neste caso, os feixes de laser liberaram 1,9 milhão de Joules de energia, o equivalente a uma pequena bateria de carro, dos quais só entre 9 mil e 12 mil Joules foram absorvidos pelo combustível.

"Só algo da ordem de 1% da energia que usamos com o laser termina no combustível, ou até menos", disse a co-autora do estudo, Debbie Callahan. "Há muito espaço para continuarmos avançando", prosseguiu.

O método precisa ser aperfeiçoado e o rendimento deve ser 100 vezes melhor "antes de que possamos chegar ao ponto de ignição", acrescentou Hurricane.

A ignição também requer auto-propagação, por meio da qual as primeiras partículas fundidas causam o calor e a pressão necessários para gerar outras, criando assim novas partículas e melhorando o rendimento.

Os últimos experimentos no NIF, um feito em setembro do ano passado e o outro em novembro, foram os primeiros a lançar provas de que as partículas deixam um pouco de energia atrás delas.

A fusão nuclear é o oposto da fissão, que apresenta como riscos a proliferação nuclear, assim como os rejeitos perigosos e duradouros.

Os núcleos de deutério e trítio, ambos isótopos obtidos a partir do hidrogênio, podem, ao contrário, se fundir para criar partículas mais pesadas.

Em teoria, a energia gerada através da fusão não resultaria em rejeitos perigosos nem contaminaria a atmosfera. Além disso, o combustível é encontrado com maior abundância: na água do mar, que cobre mais de dois terços do planeta.

O procedimento requer temperaturas extremas e pressões equivalentes às encontradas no nosso Sol e em outras estrelas ativas.

Para concretizar este objetivo, Hurricane e sua equipe dispararam seus raios laser contra um cilindro de ouro de dois milímetros de diâmetro, recoberto por dentro por uma camada congelada de combustível de deutério e trítio.

Os feixes de luz entraram através de buracos por um lado e se focaram como raios que impactaram a cobertura externa da cápsula e provocaram sua implosão, algo equivalente a reduzir uma bola de beisebol ao tamanho de uma ervilha.

O processo gera uma pressão 150 bilhões de vezes superior à exercida pela atmosfera terrestre e uma densidade de 2,5 a 3 vezes superior à do núcleo solar, disseram os cientistas. Segundo o cientista especializado Mark Herrmann, do Pulsed Power Sciences Center, de Albuquerque, trata-se de "um avanço significativo na pesquisa sobre a fusão".

Fonte: Nature

terça-feira, 4 de fevereiro de 2014

Monopolos magneticos sintéticos são gerados

Um análogo de uma partícula compreendendo um pólo magnético isolado tem sido observada por físicos nos EUA e Finlândia.

ilustração de um monopolo magnético sintético

© Heikka Valja (ilustração de um monopolo magnético sintético)

Os monopolos magnéticos foram previstos por Paul Dirac em 1931, mas nunca foram vistos na natureza. Este último trabalho não prova a existência das partículas incomuns, mas mostra que um sistema físico descrito por uma matemática subjacente pode ser criado em laboratório. A pesquisa também pode ajudar os físicos a obter uma melhor compreensão de materiais exóticos, como supercondutores, e até mesmo criar materiais com propriedades novas e úteis.
Os pólos magnéticos são sempre visto em pares, não importa quão pequeno é o ímã. Um ímã de barra comum consiste de um pólo norte e um pólo sul; se o ímã é cortado em dois, em seguida, cada uma das metades resultantes também será bipolar. Na verdade, não importa quantas vezes o ímã é dividido, os pólos norte e sul permanecem acoplados, inclusive em átomos individuais, que agem como minúsculos ímãs. Isso se reflete nas equações de Maxwell, que dizem que cargas elétricas positivas e negativas isoladas existem, mas as cargas magnéticas isoladas não ocorrem na natureza.
Isso mudou quando a mecânica quântica foi formulada no início do século 20. Paul Dirac mostrou que para ocorrer naturalmente monopolos magnéticos exigiria carga elétrica em unidades discretas. Esta singularidade é visto na natureza, mas não é totalmente compreendida, e a busca de monopolos magnéticos é um campo ativo de pesquisa.
Até agora, os físicos têm tentado criar monopolos dentro de aceleradores de partículas, mas a massa do monopolo é geralmente considerada muito alta para permitir uma observação, mesmo a do Large Hadron Collider (LHC) do CERN. Outra opção era procurar ambientes imaculados, como a Lua ou na gélida Antártida, para encontrar sinais dos monopolos que as teorias da grande unificação predizem deveria ter sido criado quando o Universo esfriou e sua simetria inicial foi quebrada. Aqui também, no entanto, os pesquisadores vêm-se de mãos vazias.
A abordagem de David Hall e seus colegas no Amherst College, em Massachusetts e colaboradores da Universidade de Aalto, na Finlândia é a produção de um análogo do que é conhecido como um "monopolo de Dirac", a forma da mecânica quântica generalizada de um monopolo magnético apresentada por Dirac. Antes de 1931, ninguém tinha sido capaz de combinar eletromagnetismo e mecânica quântica clássica para permitir a existência de monopolos magnéticos, mas Dirac foi capaz de fazer isso por considerar o que acontece quando um monopolo interage com um elétron. Ele descobriu que quando um monopolo passa por uma nuvem de elétrons - a distribuição no espaço de um único elétron , como descrito pela mecânica quântica - deixa um vórtice em seu rastro, é como o escoamento da água que flui pelo ralo.
O grupo de Hall que reproduziu um vórtice em um condensado de Bose-Einstein de átomos de rubídio ultra frios. O condensado é uma onda de matéria única e permanece na nuvem de elétrons de acordo com formulação de Dirac. Para reproduzir o monopolo, os pesquisadores aplicaram um campo magnético no condensado para orientar os átomos constituintes de tal maneira que foi criado um campo magnético "sintético"no interior do condensado. Existe uma correspondência entre esse domínio sintético e o campo que seria produzido por um monopolo magnético. "Você pode obter exatamente as mesmas linhas no campo sintético e o local do monopolo onde essas linhas de campo brotam", diz Hall.
Para mostrar que eles realmente tinham produzido um monopolo de Dirac, os pesquisadores injetou um feixe de laser através do condensado. O feixe criou uma radiografia, onde a sombra projetada pelos átomos da amostra foi perfurada por uma estreita faixa de luz. Isso foi o vórtice criado por um pólo norte isolado (sendo norte ao invés de sul simplesmente por razões técnicas). Normalmente um vórtice criado dentro de um condensado de Bose-Einstein vai de um lado do condensado para outro.

Peter Holdsworth, um físico da matéria condensada na Ecole Normale Supérieure de Lyon, elogia o trabalho como "uma aplicação requintada da nanotecnologia, átomos frios, computação de alta potência e teoria inteligente". Ele ressalta que a equipe não provou a existência de monopolos magnéticos, mas forneceu a confirmação experimental da matemática de Dirac. "É um resultado importante e poderia levar a muitos outros resultados análogo ", diz ele.

Isso vai ajudar os físicos de partículas encontrar monopolos reais? Provavelmente não, mas deverá incentivá-los a continuar a procurando.
Hall reconhece os limites do trabalho de seu grupo. "Nossos monopolos não seria registrado por uma bússola. Nós não temos sido capazes de reproduzir as propriedades como a massa da partícula em nosso experimento, mas criamos um análogo da parte magnética. Isso pode fornecer algumas dicas sobre monopolos naturais", diz ele.

Ele argumenta que seu grupo chegou mais perto de imitar supostos monopolos magnéticos naturais do que outros três grupos que relataram resultados em materiais conhecidos como spin gelados em 2009. Em trabalho anterior, as coleções em forma de tetraedros de íons que compõem spin gelados foram observados sob certas condições para a aquisição de giro líquido, de modo que se assemelha tanto ao norte isolado ou pólo sul. Hall descreve estas experiências interessantes, mas sustenta que a conexão com monopolos de Dirac era bastante fraca e o fenômeno em questão era puramente clássico, em oposição ao quântico.
Este trabalho pode ajudar os físicos a realizar simulações quânticas da matéria. Este campo de rápido crescimento tem como objetivo compreender os materiais existentes e, finalmente, criar novos, talvez até mesmo supercondutores a temperatura ambiente.

Um artigo sobre a pesquisa foi publicado na revista Nature.

Fonte: Physics World

segunda-feira, 3 de fevereiro de 2014

O mistério das bolas de fogo

Relâmpagos bola tem sido um dos fenômenos naturais mais misteriosos durante séculos, em parte porque é tão raro e transitório e, portanto, difícil de investigar.

relãmpago bola

© J. Cen, P. Yuan e S. Xue (relãmpago bola)

O raio bola é o ponto branco na extremidade esquerda, e seu espectro de forma irregular é a banda colorida. Mas uma observação fortuita durante experimentos de campo na China para estudar relâmpago comum, forneceu o que parece ser a primeira medição do espectro de emissão de raios globulares. Os dados sugerem que a bola brilhante foi composta de elementos de solo, de acordo com uma teoria popular.

Relâmpagos bola normalmente aparece durante as tempestades como um brilho, que vão desde o tamanho de uma bola de golfe a vários metros de diâmetro, que flutua no ar por entre um segundo e dezenas de segundos. Há muitos relatos históricos de tais "bolas de fogo" ferindo ou até mesmo matando pessoas e provocando incêndio em edifícios, conduzindo às explicações sobrenaturais.

As teorias científicas de relâmpagos bola abundam, com diferentes graus de plausibilidade. As bolas de plasma brilhantes foram criadas artificialmente pela passagem de micro-ondas intensas através do ar ou por descargas elétricas subaquáticas. Mas tais experiências de laboratório não podem ostentar qualquer relação com a formação de raios bola no meio ambiente, que se sabe muito pouco, uma vez que não houve quase nenhum dado sólido.

Uma teoria popular é que o raio bola é causado quando um raio atinge o solo e evapora alguns dos silicatos minerais no solo. O carbono no solo retira os silicatos de oxigênio através de reações químicas, criando um gás de átomos de silício energético. Os átomos se recombinam para formar nanopartículas ou filamentos que, embora ainda flutuando no ar, reagem com o oxigênio, liberando calor e emitindo o brilho. Se é assim, deve-se esperar para ver as linhas de emissão atômica de silício e outros elementos do solo no espectro.

Isso é o que Ping Yuan e colaboradores da Northwest Normal University em Lanzhou, na China, agora relatam. Eles haviam montado espectrômetros no remoto Planalto Qinghai, no noroeste da China para investigar relâmpago comum, que é frequente nesta região. Durante uma tempestade de fim de noite em julho de 2012, eles viram um raio bola aparecer apenas depois de um raio de cerca de 900 metros do seu aparelho e foram capazes de gravar um espectro e imagens de vídeo de alta velocidade da bola .

O brilho registrado tinha cerca de 5 metros de diâmetro, o tamanho real da bola era muito menor e ele mudou de branco para o vermelho durante o tempo que durou. Embora a escuridão impediu os pesquisadores de estimar a altitude da bola, eles viram que a bola deslocou horizontalmente por cerca de 10 metros e subiu cerca de 3 metros. Yuan diz que esta é a primeira vez que um raio bola foi visto sendo criado por um relâmpago nuvem-solo.

Os pesquisadores descobriram que o espectro continha várias linhas de emissão de silício, ferro e cálcio todos os elementos que deverão ser abundante no solo. Seria de esperar também a presença de alumínio, dada a sua abundância em minerais do solo. Mas não foi confirmado, pois não há linhas de emissão de átomos de alumínio neutro dentro da faixa espectral do instrumento (comprimentos de onda de 400 a 1.000 nanômetros). A equipe também usou seus dados de vídeo para traçar a intensidade do raio bola e diâmetro aparente à medida que varia com o tempo, até a escala de tempo de milissegundos. Os pesquisadores planejam simular as condições de observação e reproduzí-la em laboratório.

Fonte: Physical Review Letters

quarta-feira, 15 de janeiro de 2014

Capturando partículas Z em colisor

Em abril de 2013, físicos de partículas fizeram uma inesperada descoberta: uma partícula, chamada Zc(3900), que parece ser composta de quatro quarks ao invés das duas usuais ou três.

partícula Z

© APS/Alan Stonebraker (partícula Zc)

A Colaboração Beijing Spectrometer Detector (BESIII), um dos dois grupos que primeiro detectaram a Zc(3900), agora tem explorado um conjunto separado de reações que podem levar à produção desses estados de quatro quarks. Conforme relatado na Physical Review Letters, eles encontram fortes assinaturas de uma partícula, mas sua massa não é exatamente a da partícula Zc(3900). Independentemente da sua verdadeira identidade, a entidade detectada pode dar um melhor entendimento de como os quatro quarks podem se unir nestas partículas incomuns.

A prova original para a partícula Zc(3900) vem de colisões elétron- pósitron. Com energia de 4,26 GeV (giga-elétron-volts), essas colisões podem produzir uma partícula chamada Y(4260), que decai depois de algum tempo em um méson J/Ψ e dois pions. Nessas cadeias de desintegração, os físicos descobriram evidências de uma outra partícula, a Zc(3900), com uma massa de 3,9 GeV/c2.

Ainda não está claro se a Zc(3900) é uma partícula com quatro quarks ou uma "molécula ", composta de dois estados e dois quarks .

À procura de uma nova visão sobre este problema, o experimento BESIII no Beijing Electron Positron Collider analisou uma rota diferente do decaimento da Y(4260), o que resulta em um par de mésons D e um pion. Os dados mostraram um pico numa energia específica, o que implica na criação de uma partícula com uma massa de 3,885 GeV/c2. A discrepância em massa com a Zc(3900) é pequena, mas a significância observada é 2 sigma, de modo que os pesquisadores se absteram de identificar a sua partícula com semo a Zc(3900). No entanto, eles mediram o momento total angular e paridade de sua partícula, o que poderia ajudar a discriminar esta partícula de outras potenciais partículas de quatro quarks na mesma faixa de massa.

Fonte: Physical Review Letters

domingo, 12 de janeiro de 2014

Turbulência ao redor de um buraco negro

Pesquisadores utilizaram uma relação entre a relatividade geral e hidrodinâmica, a chamada correspondência gravidade-fluido, para estudar como os buracos negros podem se comportar quando perturbado, por exemplo, por uma colisão com outro objeto.

ilustração da turbulência em buraco negro

© S. R. Green (ilustração da turbulência em buraco negro)

Os efeitos da turbulência pode provocar certas vibrações ao longo do espaço-tempo do buraco negro e exibir um comportamento qualitativamente diferente do que o esperado.

A correspondência gravidade-fluido é baseada na constatação de que, em certas circunstâncias, as equações da relatividade geral de Einstein se assemelham as equações de Navier-Stokes para dinâmica de fluidos. Normalmente, altera-se parâmetros da gravidade a fim de obter informações sobre algum problema difícil do lado do fluido. Por exemplo, o trabalho recente tem tentado descrever o movimento turbulento de partículas de fluido, mapeando-o para uma geometria do espaço-tempo curvo.

O físico Stephen Green, da Universidade de Guelph, no Canadá, e seus colegas investigaram a correspondência da gravidade-fluido de outra maneira, tentando entender perturbações no buraco negro através de um estudo de turbulência de fluidos, através do número de Reynolds. Eles consideraram um fluido bidimensional, cujas oscilações de velocidade correspondem às vibrações na superfície do buraco negro. A viscosidade do fluido caracteriza a perda de energia para o buraco negro, o que faz com que as perturbações decaiam. Ao contrário de trabalhos anteriores, a equipe analisou as consequências a longo prazo da turbulência na gravidade e descobriu que, em certos casos, um buraco negro pode desenvolver turbulências, tais como vórtices giratórios de ondas gravitacionais.

Esta turbulência no buraco negro prolonga a perturbação, onde os modos de longo comprimento de onda tem decaimento mais lento, fazendo com que esta transferência de energia prolongue a vida útil total da perturbação. Os trabalhos em curso podem nos dizer se a turbulência no buraco negro é observável através, por exemplo, variações nas linhas de emissão de acreção de gás.

Fonte: Physical Review X

sexta-feira, 10 de janeiro de 2014

Gás em degenerescência profunda

O estudo de sistemas quânticos é fascinante, onde os sistemas de partículas que têm diferentes interações microscópicas ainda têm o mesmo comportamento macroscópico.

gás de férmions em degenerescência profunda

© K. Aikawa (gás de férmions em degenerescência profunda)

O físico Kiyotaka Aikawa e colegas da Universidade de Innsbruck, na Áustria, são os primeiros a esfriar um gás de férmions idênticos que apresentam dipolo dispersão universal, neste caso 60.000 átomos de érbio-167 (167Er), a uma fração da temperatura de Fermi. Este sistema de átomos frios poderia ajudar os físicos a entender melhor o comportamento de outros gases dipolares, tais como moléculas frias e, possivelmente, os sistemas de física nuclear.

A imagem mostra a esquerada férmions degenerados com T/Tf = 0,71 e a direita férmions degenerados com T/Tf = 0,47.

O princípio de exclusão de Pauli impede que dois férmions idênticos ocupem o mesmo nível de energia. Como resultado, em temperatura zero, átomos fermiônicos como o 167Er ocuparão uma escada de estados quânticos até a energia de Fermi. Mas a natureza anti-simétrica da função de onda fermiônica impede que átomos idênticos com interações de curto alcance de colidir em baixas temperaturas. Sem colisões para termalização do sistema, o resfriamento evaporativo, uma técnica padrão para o arrefecimento de gases atômicos, torna-se ineficaz.

Os pesquisadores Universidade de Innsbruck contornaram este impasse usando as interações dipolo-dipolo de longo alcance de átomos 167Er altamente magnéticos para resfriamento evaporativo do gás com 0,2 vezes a temperatura de Fermi. Os pesquisadores foram capazes de ver o aparecimento do estado quântico degenerado pela imagem dos momentos dos átomos, e mostrando que eles seguiram uma distribuição de Fermi-Dirac. O grupo também demonstra a natureza universal da seção transversal de espalhamento deste gás. Especificamente, foi mostrado que a taxa de espalhamento entre átomos depende apenas de um único parâmetro chamado comprimento de dipolo, que é proporcional ao produto da massa do átomo e ao quadrado do seu momento de dipolo.

Fonte: Physical Review Letters

quinta-feira, 9 de janeiro de 2014

Ultrapassando os limites da difração

Microscópios ópticos são amplamente utilizados em todas as áreas da ciência para ampliar a imagem de pequenos objetos.

imagem de nanoestrutura

© Tung-Yu Su/NTU (imagem de nanoestrutura)

No entanto, devido ao seu design e os limites de difração, os menores recursos que microscópios convencionais podem imagear são cerca de metade do comprimento de onda da luz que eles usam.

O físico Shi-Wei Chu, da Universidade Nacional da Tailândia, e colegas relataram uma nova técnica que supera esse limite de resolução e pode efetuar imagens de nanoestruturas, da ordem de 70 nanômetros de tamanho, inferior a um oitavo do comprimento de onda da luz visível usada em sua configuração.

O grupo montou um microscópio óptico comum com um laser e utilizou uma amostra contendo nanopartículas de ouro. O comprimento de onda do laser foi escolhido de modo que ficasse em ressonância com as partículas plasmônicas. Como consequência, a luz laser apresentou particularmente forte dispersão. Ao ajustar a intensidade do laser, os pesquisadores foram capazes de alcançar, pela primeira vez, um regime em que a luz dispersou a partir de uma partícula isolada quando foi saturada. Com técnicas de processamento de imagem apropriados, tal comportamento de saturação pode ser explorada para proporcionar imagens mais nítidas das nanoestruturas plasmônicas.

Enquanto este método apenas funciona para as nanopartículas de ouro, partículas podem ser incorporadas seletivamente de outros materiais. Embora outras técnicas recentemente demonstradas, principalmente com base em microscopia de fluorescência, permitem resolução comparável ou até melhor, este método com nanopartículas de ouro tem uma vantagem importante: as amostras podem ser fotografadas várias vezes sem danos e sem perda de intensidade de espalhamento que, nos regimes baseados em fluorescência, inevitavelmente ocorrem por causa do branqueamento das moléculas fluorescentes.

Fonte: Physical Review Letters