sábado, 24 de março de 2012

Nova imagem do núcleo do átomo

Um conceito errôneo é visualizar o átomo como sendo análogo a um sistema planetário, admitindo o núcleo, composto por prótons e nêutrons, como sendo algo estacionário, fisicamente delimitado.

nova imagem do núcleo atômico

© ANL (nova imagem do núcleo atômico)

Enquanto que há muito tempo sabemos que os elétrons são "nuvens de probabilidade" ao redor dos núcleos, devido à sua peculiaridade bipolar, podendo se comportar como partículas ou ondas.

Na década de 1980 descobriu-se que alguns núcleos atômicos de elementos leves, como hélio, lítio e berílio, não têm bordas externas definidas: eles possuem halos, partículas que se destacam além das bordas do núcleo, criando uma nuvem que envolve o núcleo. A imagem abaixo mostra uma ilustração do núcleo de berílio circundado por seu halo. Segundo medições realizadas por uma equipe alemã, o halo se estende a até 7 femtômetros (0,000000000000007 metros) do centro de massa do núcleo, cobrindo uma área três vezes maior do que a parte densa do núcleo.

núcleo de berílio circundado por seu halo

© Dirk Tiedemann/Uni-Mainz (núcleo de berílio rodeado por seu halo)

Agora, depois de realizar as observações mais precisas já feitas até hoje do halo nuclear, cientistas demonstraram que até um quarto dos núcleons (prótons e nêutrons) do núcleo denso de um átomo estão viajando continuamente a uma velocidade de até 25% da velocidade da luz.

"Nós geralmente imaginamos o núcleo como um arranjo fixo de partículas, quando na realidade há um monte de fatores acontecendo no nível subatômico que nós simplesmente não podemos ver com um microscópio," ressalta o físico John Arrington, do Laboratório Nacional Argonne (ANL), nos Estados Unidos.

Ele e seus colegas usaram grandes espectrômetros magnéticos para observar o núcleo de átomos de deutério, hélio, berílio e carbono.

O berílio ao contrário dos outros átomos possui dois aglomerados de núcleons, cada um parecido com um núcleo do átomo de hélio-4. Esses núcleons, por sua vez, estão associados a um nêutron adicional.

Isso desfaz completamente a figura do núcleo como uma esfera fisicamente delimitada, além de mostrar que o halo é mais complexo do que se imaginava.

Por causa dessa configuração complicada, o núcleo do berílio apresenta um número relativamente alto de colisões, apesar de ser um dos núcleos menos densos entre todos os elementos.

Os cientistas afirmam que esse efeito acelerador pode ser resultado de interações entre os quarks que formam os núcleons, sendo que cada próton e cada nêutron consiste de três quarks muito fortemente ligados.

Quando os núcleons se aproximam uns dos outros, as forças que unem os quarks podem ser perturbadas, alterando a estrutura dos prótons e dos nêutrons, possivelmente até mesmo formando partículas compostas pelos quarks de dois núcleos diferentes.

O próximo passo dos pesquisadores ao estudar este fenômeno será obter uma imagem da distribuição dos quarks quando os núcleons se aglutinam.

Fonte: Argonne National Laboratory

sexta-feira, 23 de março de 2012

Mecanismo insensível aos campos magnéticos

Pesquisadores europeus criaram um mecanismo insensível a campos magnéticos, com aplicações potenciais nos setores militar e médico.

invisibilidade magnética

© Alvaro Sanchez (invisibilidade magnética)

Este avanço consiste na criação de campos magnéticos estáticos gerados por um ímã permanente ou de uma bobina atravessada por uma corrente elétrica. Estes campos já são utilizados nas imagens médicas de MRI (ressonância magnética) e em muitos sistemas de segurança usados em aeroportos.

O dispositivo desenvolvido por estes pesquisadores, entre eles Alvaro Sanchez, da Universidade Autônoma de Barcelona, na Espanha, é um cilindro com duas camadas concêntricas: a camada interior, constituída por um material supercondutor, repele os campos magnéticos, enquanto a camada exterior, de material ferromagnético, os atrai.

Colocado em um campo magnético, o cilindro não o perturba, não produz nem "sombra" nem "reflexo". Assim, um objeto colocado em seu interior não será detectado magneticamente ficando, portanto, insensível ao campo magnético, explicou Sanchez, que usa a palavra "invisibilidade" para se referir ao processo.

Como o dispositivo é feito de materiais comercialmente disponíveis e funciona em campos magnéticos relativamente fortes, ele pode, segundo os autores, ser facilmente implementado.

Este sistema pode proteger uma pessoa com marcapasso, sensível às ondas eletromagnéticas, quando precisar passar por um exame de ressonância magnética, por exemplo.

Também pode atuar como um escudo magnético ao redor de um submarino e de alguns equipamentos sensíveis ao campo eletromagnético.

Os trabalhos realizados por estes pesquisadores diferem daqueles feitos nos últimos anos com metamateriais - materiais compósitos artificiais - projetados para não refletir os raios de luz.

A luz flui sobre eles como água sobre a rocha, fazendo com que se torne invisível. Até agora, os metamateriais criados apenas obtinham uma invisibilidade parcial, ressaltam os autores dos trabalhos publicados.

Fonte: Science

quarta-feira, 21 de março de 2012

Descoberta a partícula mais leve

Uma nova partícula nuclear fundamental (do núcleo atômico) foi descoberta por dois pesquisadores da Universidade de Coimbra e do Instituto Superior Técnico (IST).

simulação de uma sopa de quarks e glúons

© BNL/RHIC  (simulação de uma sopa de quarks e glúons)

A E(38), como foi designada, é a partícula subatômica mais leve conhecida e, de acordo com os seus descobridores, ela ajuda a explicar as partículas nucleares enquanto micro-universos. Eef van Beveren, da Universidade de Coimbra, e George Rupp, do IST, já submeteram o artigo científico anunciando a descoberta à revista Physical Review Letters.

A E(38) é um hádron, mas ao contrário dos outros hádrons conhecidos, este não possui quarks (partículas ainda mais pequenas) na sua constituição, mas apenas glúons, as partículas que funcionam como cola para manter juntos os quarks. "No nosso modelo dos micro-universos, esta partícula é a que gera os próprios micro-universos", explicou o pesquisador de Coimbra, que coordenou o estudo, sublinhando que "o sinal da sua presença nos dados experimentais é muito claro".

A descoberta desta nova partícula não constitui propriamente uma surpresa para Eef van Beveren. Já há mais de 30 anos que o pesquisador holandês, ainda durante o doutoramento no seu país, abordou a existência dos quarks, que nunca aparecem isolados, mas confinados num espaço fechado, enquanto parte dos tais micro-universos. "É uma coisa fechada, de onde nada pode entrar ou sair". Mas este modelo está baseado na hipótese de existência de uma partícula fundamental - como a que agora foi descoberta. O físico holandês esperava que ela existisse, mas não havia sinais da sua presença.

Foi por isso que decidiu reanalisar os dados experimentais da física de partículas nos grandes aceleradores do mundo, como o de Stanford, nos Estados Unidos, do Japão e do CERN. Ao mesmo tempo, em colaboração com George Rupp desenvolveu um método matemático de análise e comparação de dados e foi então que viram o sinal de que estavam à espera. A experiência COMPASS (COmmon Muon Proton Apparatus for Structure and Spectroscopy), realizada no CERN, para produzir hádrons.

Nessa análise foram registrados uma quantidade de 46 mil eventos com 13 sigma de significância, que é um indicador de relevância estatística. Isto é mais que suficiente, ou seja, superior a 5 sigma, para declarar-se a existência de uma partícula. A seguir a figura mostra a evidência da partícula num diagrama do número de eventos em relação à massa.

nova partícula

© U. Coimbra (evidência da partícula)

"Há 30 anos previ que a massa desta partícula devia ser ao redor de 30 MeV (Mega-elétronVolts), mas o aperfeiçoamento do método matemático fez subir um pouco este valor, para 38 MeV", explica van Beveren, sublinhando que "com esta massa, ele é o hádron mais leve que existe". O hádron mais leve que até agora se conhecia, chamado píon, é três vezes mais pesado. O próton é 25 vezes mais pesado que a partícula E(38).

A E(38) é como uma bola de sabão ínfima, em que não existem quarks, e a sua película externa é feita de glúons. Que propriedades terá, ainda vai ser estudado, mas van Beveren antecipa que esta poderá ser a longo prazo uma nova fonte de energia nuclear limpa.

Um miligrama desta matéria fornecerá um megawatt durante um ano!

Fonte: Centro de Física Teórica da Universidade de Coimbra

segunda-feira, 19 de março de 2012

Gravidade quântica pode ser testada

Os físicos acreditam que a teoria da gravidade de Einstein e a física quântica vão coalescer em uma teoria única nas chamadas escalas de Planck.

pulso de laser usado para testar a gravitação quântica

© U. Viena (pulso de laser usado para testar a gravitação quântica)

Nessas escalas, de altíssimas energias e dimensões inimaginavelmente pequenas, acredita-se que ocorram fenômenos que não ocorrem em outras escalas.

O problema é que as escalas de Planck estão tão fora da dimensão humana que a maioria dos estudiosos afirma que é virtualmente impossível testar experimentalmente a gravidade quântica, a não ser em eventos cósmicos muito raros e difíceis de observar.

Um fator preponderante é que o comprimento de Planck é cerca de 1,6 x 10-35 metro. Se você der um zoom nessa dimensão, e torná-la do tamanho de 1 metro, então um único átomo terá o tamanho do Universo inteiro.

A energia de Planck, por outro lado, é tão descomunal que faz o acelerador do LHC parecer uma pilha descarregada; um acelerador de partículas capaz de produzir a energia de Planck seria enorme.

Outro fator intrigante é a massa de Planck, que é 2,17 × 10-8 kg, mais ou menos a massa de um grão de poeira, que parece ser grande demais para os fenômenos quânticos.

Fica então, de um lado, a teoria de Einstein especulando sobre dimensões muito grandes e, de outro, a mecânica quântica indagando sobre moléculas, átomos e coisas ainda menores, ambas falando muito bem em suas respectivas áreas, mas inconciliáveis.

Uma equipe internacional de físicos afirma que se pode testar experimentalmente algumas predições da teoria da gravidade quântica observando os efeitos quânticos em um sistema com a massa de Planck.

Na mecânica quântica, é impossível saber, ao mesmo tempo, onde uma partícula está e a que velocidade ela está se movendo.

Apesar disso, é possível fazer duas medições consecutivas: uma medição da posição da partícula, seguida por uma medição do seu momento, ou vice-versa.

Conforme a sequência usada - primeiro a posição e depois a velocidade, ou vice-versa -, serão obtidos resultados experimentais diferentes.

De acordo com várias teorias da gravidade quântica - ou candidatas a teoria da gravidade quântica - essa diferença entre as duas medições se altera dependendo da massa do sistema, uma vez que o comprimento de Planck, uma espécie de quantum do comprimento, coloca um limite à medição de distâncias.

A equipe de físicos agora demonstrou matematicamente que, embora essas diferenças sejam muito pequenas, elas podem ser verificadas usando sistemas quânticos muito maciços, utilizando a gigantesca massa de Planck.

Mas isso não é um problema assim tão grande, uma vez que a própria equipe da Universidade de Viena já conseguiu estabelecer uma interação entre um fóton e um ressonador micromecânico, criando o chamado acoplamento forte, capaz de transferir efeitos quânticos para o mundo macroscópico.

Ou seja, para eles, é possível testar a gravidade quântica em laboratório.

O experimento proposto lembra um pouco uma técnica usada recentemente para produzir luz a partir do vácuo.

A ideia principal é usar um pulso de laser para interagir quatro vezes com um espelho em movimento para avaliar com exatidão a diferença entre as duas medições - medir primeiro a posição e depois medir o momento, em comparação com medir primeiro o momento e depois medir a posição.

Segundo a equipe, atingindo a precisão adequada, é possível mapear o efeito no pulso de laser, lendo os resultados com técnicas de óptica quântica.

"Qualquer desvio do resultado previsto pela mecânica quântica será muito excitante," afirmou Igor Pikovski, da Universidade de Viena, idealizador da técnica, "mas mesmo se não for observado nenhum desvio, os resultados poderão ajudar na busca por possíveis novas teorias."

Fonte: Nature Physics e Inovação Tecnológica

sexta-feira, 16 de março de 2012

Transmissão de mensagem através de neutrinos

Os neutrinos talvez não sejam mais rápidos do que a luz, mas podem se tornar as estrelas de uma nova forma de comunicação.

antena de transmissão

© Fermilab (antena de transmissão)

Cientistas do Projeto Minerva demonstraram na prática que é possível transmitir uma mensagem usando neutrinos.

E como neutrinos são capazes de atravessar virtualmente qualquer coisa, isto significa que as mensagens podem ser enviadas diretamente através da Terra.

Neste experimento pioneiro, a palavra "neutrino" foi transmitida a uma distância de 1 km, incluindo 210 metros de rocha sólida.

A esfericidade da Terra exige múltiplas torres de repetição para a transmissão de dados por ondas eletromagnéticas.

Se remetente e destinatário estiverem longe o suficiente, a solução mais viável é transmitir a mensagem para um satélite artificial, que está no alto para captar os dois e servir de ponte para a comunicação.

Uma alternativa é ligar todos os pontos por redes de fibras ópticas.

Mas uma mensagem de neutrinos pode ser enviada diretamente, simplesmente mirando na posição do destinatário e disparando o feixe, não importando se há montanhas, oceanos, ou mesmo se o destinatário está do outro lado da Terra.

Neutrinos são partículas eletricamente neutras e quase sem massa - sua massa é tão desprezível que um neutrino é capaz de atravessar um cubo de chumbo sólido, com 1 ano-luz de aresta, sem se chocar com um só átomo.

Isso, obviamente, impõe um desafio para uma futura comunicação por neutrinos: construir uma antena capaz de detectá-los.

Felizmente os físicos vêm fazendo isso há anos, para criar os observatórios que permitam estudá-los.

Ainda são detectores muito sensíveis, que precisam ser instalados em compartimentos subterrâneos, capazes de isolá-los de outros tipos de radiação.

detector Minerva

© Fermilab (detector Minerva)

Neste experimento, os cientistas usaram como antena de recepção o detector Minerva, que pesa nada menos do que 170 toneladas. O transmissor foi o feixe de neutrinos NUMI (Neutrinos Main Injector).

Ambos são parte do acelerador de partículas Fermilab, nos Estados Unidos.

Embora pareça interessante, dificilmente as mensagens por neutrinos terão uso prático: a velocidade atingida na transmissão foi de 0,1 bit por segundo.

Ou seja, levou mais de duas horas para que a palavra "neutrino" fosse transmitida.

A mensagem foi codificada de forma binária, onde transmitir neutrinos significava 1, e não transmitir neutrinos significava 0.

Embora o feixe de transmissão dispare trilhões de neutrinos de cada vez, o detector só raramente consegue detectá-los.

A palavra neutrino consistia de 25 pulsos, separados entre eles por um período sem transmissão de 2 segundos. Isso foi repetido 3.500 vezes ao longo de 142 minutos.

Em média, a "antena" detectou 0,81 neutrino a cada pulso, com uma taxa de erro de 1% - apenas 1 em cada 10 bilhões de neutrinos foi detectado.

Fonte: Fermilab e Inovação Tecnológica

quinta-feira, 15 de março de 2012

Experimento em usina nuclear chinesa

Neutrinos são pequenas partículas esquivas. Apenas no final da década de 1990 foi descoberto que eles têm massa, após anos de indicações duvidosas nesse sentido.

detector de neutrino Daya Bay

© Roy Kaltschmidt (detector de neutrinos Daya Bay)

Podem oscilar entre três tipos, ou "sabores", mudando a identidade durante o trajeto. Talvez o que lhes tenha trazido mais fama é que foram acusados, no ano passado, de quebrarem a lei cósmica de viajar mais rápido que a luz (o júri ainda não deliberou, mas a absolvição parece iminente).
Agora, cientistas estão mais próximos de descobrir o modus operandi do neutrino. A colaboração de físicos possibilitou medir um dos descritores essenciais da mudança de comportamento, que troca o sabor do neutrino, um número chamado θ 13 (lê-se “teta um três”). Esse número, conhecido como ângulo de mistura, descreve a probabilidade de uma antipartícula de neutrino do elétron, o antineutrino do elétron, oscilar para outro sabor, percorrendo uma distância relativamente curta (cada um dos três sabores de neutrinos – do elétron, do tau e do múon – tem sua própria antipartícula parceira). Dois outros parâmetros de oscilação de neutrinos, ou ângulos de mistura, já foram medidos, mas o θ 13 é relativamente pequeno se comparado com os outros dois e provou ser mais difícil de definir.
Desde o ano passado, um grupo de físicos tenta medir o θ 13 rastreando antineutrinos emitidos por uma grande usina nuclear Chinesa. A colaboração do experimento do Reator de Neutrinos Daya Bay construiu seis detectores, alguns perto dos reatores e outros a mais de um quilômetro de distância, para acompanhar como antineutrinos do elétron se transformam em outros sabores ao viajar através do espaço. Já que os detectores são ajustados para identificar apenas antineutrinos do elétron, qualquer oscilação significa que os neutrinos não serão detectados, isto é, eles parecem desaparecer. Outros experimentos tomaram o rumo oposto, procurando o surgimento de neutrinos do elétron em um feixe que transporta outros tipos de neutrinos.
Em apenas dois meses de dados, o conjunto distante de detectores registrou mais de 10 mil visitas de antineutrinos do elétron. Isso, porém, corresponde a apenas 94% do quanto seria ingenuamente esperado por extrapolação a partir dos detectores mais próximos dos reatores nucleares. Isso significa que uma fração substancial oscilou para outro sabor em sua viagem relativamente curta. “O que vemos agora é que este desaparecimento (de antineutrinos do elétron) está em 6%”, afirma o físico de neutrinos Karsten Heeger, da Universidade de Wisconsin-Madison, membro da colaboração Daya Bay. “É um efeito bastante grande”. Heeger apresentou os resultados experimentais em 8 de março em um simpósio na Universidade Duke, e o grupo submeteu seu estudo para a Physical Review Letters.

Fonte: Scientific American Brasil

quarta-feira, 7 de março de 2012

Um diodo emissor de luz eficiente

Físicos conseguiram demonstrar na prática, pela primeira vez, que um semicondutor pode emitir mais energia do que consome.

LED

© APS (diodo emissor de luz)

O semicondutor é um diodo emissor de luz (LED) que absorve energia na forma de eletricidade e a emite na forma de luz.

Os cálculos teóricos que indicavam que isso era possível foram feitos há décadas.

A energia absorvida por um elétron que viaja através de um LED é igual à sua carga vezes a tensão aplicada, que causou seu movimento.

Mas se esse elétron ocasionar a emissão de um fóton, ou seja, se ele produzir luz, a energia do fóton emitido depende da chamada bandgap - a diferença de energia entre os elétrons da camada de condução e da camada de valência - que pode ser muito maior.

Ou seja, potencialmente a energia gerada pode ser maior do que a energia consumida. Mas ninguém nunca havia visto isto acontecer na prática.

Como, na maior parte dos casos, a grande maioria dos elétrons não produz fótons, o rendimento médio, em termos da luz emitida por um LED, fica abaixo da potência elétrica consumida.

Parthiban Santhanam e seus colegas do MIT (Massachusetts Institute of Technology) conseguiram produzir o efeito previsto pela teoria, ainda que, em seu LED, menos de 1 em cada 1.000 elétrons produza efetivamente um fóton.

Eles criaram um LED com uma bandgap muito estreita, e aplicaram uma tensão tão pequena que o componente funciona como se fosse um resistor.

A partir daí, eles começaram a cortar a tensão pela metade, reduzindo a potência elétrica por um fator de 4.

Mas o número de elétrons caiu apenas por um fator de 2, e consequentemente a potência da luz emitida.

Ao chegar a uma potência elétrica de entrada de 30 picowatts, os pesquisadores detectaram cerca de 70 picowatts de luz emitida.

Essa energia extra vem das vibrações da rede atômica do material, induzidas pelo calor ambiente; logo, o LED se resfria ligeiramente, como acontece nos trocadores de calor termoelétricos.

O experimento fornece luz insuficiente para a maioria das aplicações práticas. Contudo, ele demonstra que aquecer os diodos emissores de luz aumenta sua potência de saída e sua eficiência.

Isso significa que eles podem se comportar como motores de calor termodinâmicos, mas provavelmente não nas altas velocidades de chaveamento que eles alcançam nos aparelhos eletrônicos modernos.

Fonte: Physical Review Letters

domingo, 4 de março de 2012

Ondas de rádio torcidas em múltiplos canais

Um grupo de pesquisadores italianos e suecos parece ter resolvido o problema do congestionamento dos canais de transmissão de dados via rádio ou transmissões wireless.

ondas eletromagnéticas torcidas

© Revista Física (ondas eletromagnéticas torcidas)

Celulares, internet sem fio e TVs digitais estão provocando um esgotamento rápido do número de frequência de rádio disponíveis para transmitir informações, embora a adoção da era digital esteja longe de atingir seu potencial.

A saída pode ser trançar as ondas de rádio, girando-as em seu próprio eixo, até que elas assumam o formato da rosca de um parafuso.

Uma onda pode ser girada ao redor de seu eixo um certo número de vezes, tanto no sentido horário quanto anti-horário, o que permite montar inúmeras configurações de ondas diferentes, que podem compartilhar a mesma banda de transmissão, ou a mesma frequência.

Agora, Fabrizio Tamburini e seus colegas das universidades de Pádua (Itália) e Uppsala (Suécia) demonstraram que isso também é possível de se fazer na prática com as ondas de rádio.

As ondas de rádio torcidas permitem que um número praticamente infinito de canais possa ser transmitido e recebido em uma mesma área. O mecanismo funciona para rádio, TV e WiFi.

Para demonstrar a técnica, a equipe transmitiu ondas de rádio torcidas, na banda de 2,4 GHz, por uma distância de 442 metros, entre uma casa na Ilha de São Jorge e um prédio na região continental de Veneza, na Itália.

Os dois canais inseridos na transmissão foram detectados e separados perfeitamente.

"É possível usar a multiplexação, como na TV digital, em cada um dos feixes, para implementar ainda mais canais nos mesmos estados, o que significa que se pode obter 55 canais na mesma banda de frequência," disse Tamburini.

A descoberta tem efeitos também na astrofísica.

Os buracos negros, por exemplo, estão girando constantemente. Conforme as ondas passam por eles, elas são forçadas a girar, alinhando-se com o buraco negro.

De posse dos novos cálculos, os astrofísicos poderão tirar mais informações da luz captada, em diversos comprimentos de onda, vinda desses e de outros corpos celestes.

"Nós descobrimos que isso cria um novo efeito relativístico que estampa um momento angular orbital nessa luz," afirma o grupo, em um outro artigo que estabelece os fundamentos teóricos da descoberta.

Fonte: New Journal of Physics e Nature Physics

terça-feira, 28 de fevereiro de 2012

Mapa dos elétrons de uma única molécula

Pesquisadores da IBM conseguiram captar pela primeira vez imagens da distribuição das cargas elétricas em uma única molécula, essencialmente um mapa dos elétrons da molécula.

distribuição de cargas numa molécula de naftalocianina

© Nature (distribuição de cargas numa molécula de naftalocianina)

As imagens revelam detalhes de uma complexa oscilação de elétrons, mostrando a distribuição de energia entre os segmentos da molécula.

Os cientistas já haviam medido a carga elétrica e até o spin de um átomo individual, embora o que mais tenha sido comemorado tenha sido a foto de átomo neutro.

Fabian Mohn e seus colegas combinaram vários tipos de microscópios eletrônicos, mas demonstraram a utilidade especial de um tipo menos conhecido deles, chamado microscópio de força por sonda Kelvin (Kelvin probe force microscopy).

Trata-se de uma variação do microscópio de força atômica, mas que não faz contato físico com a amostra que está sendo analisada.

Um braço oscilante, ou cantiléver, com uma ponta formada por uma única molécula passa sobre a amostra, que é eletricamente condutora. A diferença de potencial entre a ponta e a amostra gera um campo elétrico que pode ser medido.

Assim, o microscópio não mede a carga elétrica da molécula diretamente, mas o campo elétrico gerado por essa carga. O campo é mais forte nas áreas da molécula que estão carregadas.

Áreas com cargas opostas produzem um contraste diferente porque a direção do campo elétrico se inverte; é essa diferença que gera as áreas mais claras ou mais escuras da imagem.

O material analisado na verdade era uma única molécula de naftalocianina, o sistema experimental todo inclui, além da molécula observada, uma finíssima camada isolante de sal de cozinha (NaCl), que as separa do substrato de ouro.

Os cientistas mostraram que a microscopia de força por sonda Kelvin pode mapear a diferença de potencial desse sistema com resolução submolecular, e através de cálculos teóricos de densidade funcional verificaram que esses mapas refletem a distribuição intramolecular das cargas.

A naftalocianina é uma molécula que, por ficar saltando de um estado para outro sob a ação de uma carga elétrica, já está sendo estudada para o desenvolvimento de um transístor molecular.

Embora seja uma pesquisa básica, a expectativa é que a melhoria das técnicas de observação de materiais em escala molecular e atômica permita o melhor entendimento de mecanismos envolvidos, por exemplo, com o desenvolvimento de melhores catalisadores e da fotossíntese artificial.

Fonte: Nature Nanotechnology

sábado, 25 de fevereiro de 2012

Vórtices magnéticos viram bits gravados eletricamente

Há cerca de três anos, cientistas alemães descobriram uma estrutura magnética totalmente nova em um cristal de silício e manganês - uma rede ordenada de redemoinhos magnéticos.

skyrmions formando uma rede regular num cristal

© Nature (skyrmions formando uma rede regular num cristal)

Esses redemoinhos foram batizados de skyrmions pelo professor Christian Pfleiderer, da Universidade Técnica de Munique, em homenagem a Tony Skyrme, um físico teórico britânico que previu sua existência cinquenta anos antes.

A verificação experimental do fenômeno foi um impulso para a área da spintrônica, componentes nanoelétricos que utilizam não apenas a carga dos elétrons para processar informações, mas também seu momento magnético, mais conhecido como spin.

Entusiasmados com a então recente concessão do Prêmio Nobel de Física de 2007 a Peter Grünberg e Albert Fert pela descoberta de um mecanismo que permitiu a leitura mais rápida de dados armazenados magneticamente nos discos rígidos, os cientistas logo pensaram em usar esses cristais de vórtices magnéticos para armazenar dados.

No campo do armazenamento de dados, as pesquisas hoje se concentram em descobrir como os dados magnéticos podem ser escritos diretamente nos materiais usando apenas a corrente elétrica.

A vantagem dos skyrmions é que eles podem ser controlados com uma corrente 100.000 vezes menor do que a necessária para controlar outras nanoestruturas.

E, enquanto o bit magnético de um disco rígido moderno possui cerca de um milhão de átomos, os cientistas já demonstraram skyrmions com apenas 15 átomos.

Agora, a equipe alemã desenvolveu uma técnica que permite que os skyrmions sejam movidos e medidos de uma forma inteiramente eletrônica.

"Quando os redemoinhos elétricos movem-se em um material, eles geram um campo elétrico," explica o Dr. Pfleiderer. "E isto é algo que nós podemos medir diretamente com equipamentos eletrônicos disponíveis em nosso laboratório."

Hoje, na cabeça de leitura e escrita de um disco rígido, uma corrente elétrica é usada para gerar um campo magnético, a fim de magnetizar uma área do disco e, assim, registrar um bit de dados.

Os skyrmions, ao contrário, podem ser movidos diretamente, e com uma corrente muitíssimo menor.

"Isto deverá tornar a gravação e o processamento de dados muito mais compacto e energeticamente eficiente," diz o pesquisador.

Contudo, ainda há desafios a vencer: tudo está funcionando no laboratório em temperaturas criogênicas, incompatíveis com equipamentos funcionando à temperatura ambiente.

Fonte: Nature Physics

segunda-feira, 20 de fevereiro de 2012

Criado o menor transístor atômico

Cientistas australianos criaram um transístor atômico, totalmente funcional, e fabricado com uma precisão inédita.

potencial em função da posição dos eletrodos dopados

© Nature (potencial em função da posição dos eletrodos dopados)

O transístor miniaturizado consiste em um único átomo de fósforo colocado sobre um cristal de silício com poucos átomos de largura.

Nas extremidades da pastilha de silício são colocados os eletrodos e a porta de controle, tudo em escala atômica.

Todo o conjunto estando em escala atômica significa que o novo componente é tão importante para a computação quântica quanto para a computação eletrônica tradicional.

Já foram criados diversos tipos de transistores atômicos antes, mas todos dependiam de uma certa dose de acaso durante os experimentos, já que a manipulação de átomos individuais é muito difícil. Isso significa que, nos experimentos anteriores, os cientistas tinham que construir inúmeros dispositivos, até encontrar um que funcionasse.

"Mas esse componente é perfeito," garante a Dra. Michelle Simmons, da Universidade de Nova Gales do Sul, na Austrália. "Esta é a primeira vez que se demonstrou o controle de um átomo individual sobre um substrato com esse nível de precisão.

Depois que o transístor fica pronto, sob o microscópio eletrônico, "é possível ver até as minúsculas marcas escavadas na sua superfície," garante o Dr. Martin Fuechsle, coautor do trabalho.

É nessas saliências que os eletrodos são colocados, para que a tensão seja fornecida e o transístor funcione. Estas estruturas são fabricadas por uma espécie de litografia, a técnica padrão usada pela indústria eletrônica.

O grupo provou que é realmente possível posicionar um átomo de fósforo num ambiente de silício juntamente com as portas de controle.

O transístor atômico apresentou características eletrônicas que confirmam uma previsão surpreendente, de que a Lei de Ohm funciona em escala atômica.

Se o atual ritmo de miniaturização se mantiver, os transistores deverão atingir a escala atômica por volta de 2020.

Enquanto os chips mais modernos no mercado possuem transistores de 32 nanômetros, o átomo de fósforo usado neste transístor atômico mede 0,1 nanômetro.

Embora o protótipo de um transístor atômico agora já esteja pronto, sua construção depende de aparatos como o microscópio de força atômica, o que significa que a técnica ainda não é totalmente adequada para a fabricação de componentes eletrônicos em larga escala. E, para funcionar, ele deve ser mantido a uma temperatura de -196 ºC.

Mas talvez esta seja uma das primeiras demonstrações de uma das grandes promessas da nanotecnologia, a de que é possível manipular átomos para construir dispositivos úteis.

O transístor atômico também pode representar a fronteira final da eletrônica como a conhecemos, a partir de onde já se entra no reino da spintrônica e da computação quântica.

Fonte: Nature Nanotechnology

sexta-feira, 10 de fevereiro de 2012

O sinal para o Bóson de Higgs ganha força

Essa semana, os dois principais experimentos do Large Hadron Collider (LHC), o acelerador de partículas mais potente do mundo, apresentaram os resultados das últimas análises.

colisão de partículas no detector CMS

© CERN (colisão de partículas no detector CMS)

Os novos artigos corroboram o anúncio de dezembro, do possível sinal do Higgs, mas não nos animemos muito.
Primeiro, não há dados novos: o LHC cessou a colisão de prótons em novembro e estes últimos resultados são apenas revisões de etapas anteriores. No caso do Compact Muon Solenoid (CMS), físicos foram capazes de observar outro tipo possível de decomposição do Higgs, permitindo a ampliação do sinal de 2,5σ para 3,1σ. Tomados em conjunto com os dados de outro detector, o Atlas, o sinal global do Higgs, não oficialmente, se encontra em cerca de 4,3σ. Em outras palavras, se acreditarmos nas estatísticas, então esse sinal tem quase 99,996 % de chance de estar certo.
Após o reinício do LHC, em abril deste ano, estaremos muito mais perto de saber o que realmente ocorre. Agora, cientistas se reúnem em Chamonix, na França, para decidir a potência a usar então no acelerador. Os últimos rumores dizem que o aparelho impulsionará de 7-8 TeV e que aumentará ainda a luminosidade (o número de colisões por passagem).

A significância com maior excesso (em 124 GeV) aumentou ligeiramente para um desvio padrão de 2,1. Não há nenhuma mudança substantiva nas conclusões: a questão da existência do bóson de Higgs referente ao Modelo Padrão só poderá ser resolvido com a coleta de mais dados durante este ano.

Fonte: Scientific American Brasil e CERN

Discos rígidos podem ser gravados com calor

Uma equipe internacional de cientistas demonstrou uma forma quase inacreditável de ler e escrever bits magnéticos em um disco rígido.

gravando dados com calor

© Universidade de York (gravando dados com calor)

A descoberta possibilita a gravação das informações usando apenas calor. A gravação com calor também é muito mais rápida do que a técnica atual, que utiliza campos magnéticos.

A técnica permite que as informações sejam processadas centenas de vezes mais rapidamente do que pelo método magnético, além de exigir menos energia.

"Em vez de usar um campo magnético para gravar as informações na mídia, nós exploramos forças internas muito mais fortes e gravamos os dados usando apenas o calor," afirmou o Dr. Thomas Ostler, da Universidade de Iorque, no Reino Unido, principal autor da pesquisa.

Este método revolucionário permite a gravação de terabytes (milhares de gigabytes) de dados por segundo, centenas de vezes mais rápido do que a tecnologia atual de discos rígidos. Como não há necessidade de um campo magnético, há também um menor consumo de energia.

O feito é mais surpreendente porque sempre se acreditou que o calor destruísse a ordem magnética.

Até agora se acreditava que a única forma de gravar um bit de informação - fundamentalmente inverter os pólos de um ímã - consistia em aplicar um campo magnético externo.

Quanto mais forte for o campo magnético aplicado, mais rápido será feita a gravação do bit magnético.

A indústria sabe disso, mas há tempos não consegue reduzir o tempo de gravação de um bit magnético, que atualmente está por volta de 1 nanossegundo.

O que a equipe demonstrou é que as posições dos pólos norte e sul do ímã, ou do domínio magnético que representa um bit, podem ser invertidas por um pulso ultracurto de calor.

A súbita elevação da temperatura altera a orientação do ímã em 2 milésimos de nanossegundo.

Segundo os cientistas, com a técnica de escrita por calor é possível atingir uma densidade de armazenamento de 10 petabytes por metro quadrado a uma velocidade de 200 Gb/s. Isso representa 10 vezes mais dados por área, gravados 300 vezes mais rápido, do que os discos rígidos atuais.

O campo magnético gerado pela cabeça de gravação de um disco rígido possui uma direção, o que permite que ela grave ou um 0 ou um 1. Já um pulso de calor não tem direção.

Uma hipótese deste procedimento se deve à combinação de átomos no material magnético usado, uma liga de ferro e com o metal de terras raras gadolínio.

Cada átomo tem seu próprio magnetismo, e normalmente os dois elementos apontam em direções opostas. Como os átomos de gadolínio são magneticamente mais fortes, os átomos de ferro se alinham com eles.

Um pulso de calor muito curto - de 1/10.000 de nanossegundo - é suficiente para desarranjar a orientação em massa dos átomos de ferro. Os átomos de gadolínio reagem mais lentamente. Quando o material esfria de novo, os átomos dos dois materiais estão apontando em direções opostas.

Mas basta repetir o processo para que todos os átomos se agitem - e os átomos de ferro voltam a acompanhar os átomos de gadolínio.

Os pulsos de calor são disparados com um laser. Segundo os pesquisadores, com a eliminação dos eletroímãs no interior de um disco rígido, o equipamento poderá consumir muito menos energia, mesmo levando em conta o consumo do laser.

Fonte: Nature

Efeito deixa átomo de ferro transparente

Cientistas conseguiram realizar um experimento pelo qual demonstraram que o núcleo atômico pode se tornar transparente.

princípio da transparência induzida eletromagneticamente

© DESY (princípio da transparência induzida eletromagneticamente)

A novidade, do grupo liderado por Ralf Röhlsberger no Deutsches Elektronen-Synchrotron (DESY), em Hamburgo, na Alemanha, é considerada importante para o desenvolvimento de computadores quânticos, que poderão substituir os atuais com velocidades de processamento hoje impossíveis de serem atingidas.

A técnica, que utiliza o efeito da transparência induzida eletromagneticamente, permite com que materiais opacos possam se tornar transparentes para a luz em certos comprimentos de onda como o raio X. A técnica permite o controle da transmissão e da velocidade da luz e envolve interferência quântica.

O experimento consitui de duas finas camadas de ferro-57 no interior de uma cavidade óptica, um espaço formado por dois espelhos paralelos de platina, que forçam os raios X a ficar indo para a frente e para trás múltiplas vezes.

As duas camadas de átomos de ferro-57, cada uma com aproximadamente três nanômetros de espessura, são mantidas em uma posição muito precisa entre os dois espelhos de platina usando camadas de carbono, que é transparente para os raios X do comprimento de onda utilizado no experimento.

O sanduíche inteiro, medindo 50 nanômetros de espessura, recebe um feixe extremamente fino de raios X, disparado em um ângulo muito baixo. No interior da cavidade óptica a luz é refletida para frente e para trás várias vezes, gerando uma onda estacionária, uma ressonância.

O ferro se torna quase transparente para os raios-X quando o comprimento de onda da luz e a distância entre as duas camadas de ferro ficam em uma proporção precisa; uma camada de ferro deve estar exatamente no mínimo da ressonância de luz, e a outra exatamente no máximo.

Quando as camadas são deslocadas no interior da cavidade óptica o sistema torna-se imediatamente não transparente, o que permite o controle deste fenômeno, denominado efeito quântico óptico, causado pela interação dos átomos no interior das camadas de ferro.

Ao contrário do que ocorre nos átomos individuais, os átomos dentro de uma cavidade óptica absorvem e irradiam a luz em sincronia. Graças à geometria precisa deste experimento, suas oscilações cancelam-se mutuamente, o que faz com que o ferro se torne transparente.

A ilustração acima ajuda a entender o fenômeno, mostrando múltiplas imagens das duas camadas de ferro-57: a interação dos raios X com as duas camadas leva a um estado de superposição quântica do ferro e de suas imagens nos espelhos, que faz com que os átomos de ferro pareçam transparentes.

Em contraste com os experimentos anteriores com a transparência induzida eletromagneticamente, apenas alguns poucos fótons são necessários para gerar este efeito por intermédio dos raios X.

Pelo efeito da transparência induzida eletromagneticamente, com um laser intenso em uma determinada frequência é possível fazer com que um material não transparente se torne transparente para a luz de outra frequência. Esse efeito é promovido pela interação complexa da luz com a eletrosfera, onde estão os elétrons.

No laboratório de luz síncrotron do DESY, o grupo demonstrou que esse efeito também existe em raio X quando os raios são direcionados para o núcleo atômico do isótopo de ferro 57 (pelo método chamado de espectroscopia de Mössbauer), que compreende 2% do ferro que ocorre naturalmente no planeta.

“O resultado de alcançar a transparência no núcleo atômico é, em suma, o efeito da transparência induzida eletromagneticamente sobre o núcleo. Certamente que ainda há um longo caminho a percorrer até que o primeiro computador com luz quântica se torne realidade. Entretanto, com esse efeito fomos capazes de realizar uma classe completamente nova de experimentos de óptica quântica de alta sensibilidade”, disse Röhlsberger.

Segundo o cientista, a nova fonte de laser de raios X XFEL, que está sendo construída em Hamburgo, representa uma grande oportunidade de se conseguir controlar este método através dos raios X.

O grupo alemão também demonstrou outro paralelo do efeito da transparência induzida eletromagneticamente; onde a luz presa em uma cavidade óptica viaja a uma velocidade de apenas alguns metros por segundo. Normalmente a velocidade é a da luz, de cerca de 300 mil quilômetros por segundo.

Fonte: Nature

quinta-feira, 2 de fevereiro de 2012

Átomo simula asteroides troianos de Júpiter

Físicos construíram um modelo preciso de uma parte do Sistema Solar no interior de um único átomo de potássio.

asteroides troianos

© Minor Planet Center (asteroides troianos)

A imagem acima mostra as órbitas dos planetas Mercúrio, Vênus, Terra, Marte e Júpiter (azul claro); asteroides do cinturão principal (pontos verdes); os "Near Earth Objects" (círculos em vermelho); os asteroides troianos (pontos azul escuro); e os cometas (quadrados em azul claro).

Eles fizeram com que um elétron orbitasse o núcleo do átomo exatamente da mesma forma que os asteroides troianos de Júpiter orbitam o Sol.

Os átomos são comumente representados como sistemas planetários, graças ao modelo criado por Niels Bohr em 1913.

modelo atômico de Bohr

© TU Vienna (modelo atômico de Bohr)

Contudo, apesar de o modelo de Bohr ser bem ilustrativo, a mecânica quântica estabelece que o elétron pode ser encontrado em muitos lugares, o que transforma sua órbita em um espaço grande, difuso e incerto.

Na física quântica, o elétron é definido como uma onda, ou uma "nuvem de probabilidades". Simplesmente não faz sentido perguntar qual é a "posição real" de um elétron, porque ele está situado em todas as direções possíveis ao redor do núcleo ao mesmo tempo.

Mas, os cientistas da Áustria e dos Estados Unidos descobriram que os átomos têm algo em comum não apenas com os sistemas planetários, mas com o nosso Sistema Solar em particular.

Mais especificamente, eles descobriram que um tipo especial de átomo pode simular os asteroides troianos de Júpiter, asteroides que viajam à frente e atrás do planeta, em pontos de equilíbrio gravitacional conhecidos como pontos de Lagrange.

Da mesma forma que Júpiter estabiliza a órbita dos seus asteroides troianos, a órbita dos elétrons ao redor do núcleo atômico pode ser estabilizada usando um campo eletromagnético.

No experimento, a influência estabilizadora da gravidade de Júpiter foi substituída por um campo magnético precisamente ajustado. O campo oscila precisamente com a frequência correspondente ao período orbital do elétron ao redor do núcleo.

Isso estabelece um ritmo para o elétron, de forma que o elétron-onda é mantido em um ponto específico por um longo tempo.

Com isto, o elétron pode até mesmo ser empurrado para outra órbita - mais ou menos como se os asteroides troianos de Júpiter fossem subitamente forçados a orbitar Saturno.

Para fazer isto, o grupo usou um raio laser para excitar o elétron mais externo do átomo de potássio para números quânticos - descritivos da "órbita" do elétron - entre 300 e 600, criando um átomo de Rydberg.

Isto significa que eles construíram um átomo gigante, eventualmente o maior átomo do mundo - o elétron orbita o núcleo a uma distância tão grande que o átomo inteiro ficou do tamanho de um ponto ".".

Os cientistas se entusiasmaram com o feito, e agora planejam preparar átomos com vários elétrons se movendo em órbitas planetárias ao mesmo tempo.

Isto permitirá que eles estudem como o mundo quântico dos objetos em escala atômica correspondem ao mundo clássico, como nós o percebemos com nossos sentidos.

"A zona de transição entre a mecânica quântica e a física clássica é a mais fascinante e menos compreendida fronteira da física," afirmou Joseph Eberly, membro da equipe.

Fonte: Physical Review Letters