sexta-feira, 23 de dezembro de 2016

Espectro de luz da antimatéria é observado

A experiência ALPHA observa pela primeira vez o espectro de luz da antimatéria.

nuvem de átomos de anti-hidrogênio

© Chukman So (nuvem de átomos de anti-hidrogênio)

A colaboração ALPHA relata a primeira medição sobre o espectro óptico de um átomo de antimatéria. Esta conquista apresenta desenvolvimentos tecnológicos que abrem uma era completamente nova na pesquisa de alta precisão da antimatéria. É o resultado de mais de 20 anos de trabalho da comunidade da antimatéria no CERN.

“Usar um laser para observar uma transição no anti-hidrogênio e compará-la ao hidrogênio para ver se obedecem às mesmas leis da física tem sido sempre um objetivo chave da pesquisa da antimatéria,” declarou Jeffrey Hangst, porta-voz da colaboração da experiência ALPHA.

Os átomos consistem em nuvens de elétrons nos orbitais de um núcleo. Quando os elétrons se movem de uma camada de um orbital para outro, absorvem ou emitem luz em comprimentos de onda específicos, formando o espectro do átomo. Cada elemento tem um espectro único. Em resultado, a espectroscopia é uma ferramenta habitualmente usada em muitas áreas da física, da astronomia e da química. Ajuda a caracterizar átomos e moléculas e os seus estados internos. Por exemplo, na astrofísica, a análise do espectro de luz de estrelas longínquas permite aos cientistas determinar a sua composição.

Com o seu único próton e único elétron, o hidrogênio é o átomo mais abundante, mais simples e melhor compreendido do Universo. O seu espectro foi medido com uma precisão muito elevada. Por outro lado, os átomos de anti-hidrogênio são mal compreendidos.

Dado que o Universo parece consistir inteiramente de matéria, os constituintes dos átomos do anti-hidrogênio (antiprótons e posítrons) têm que ser produzidos e montados nos átomos antes que o espectro do anti-hidrogênio possa ser medido. É um processo cuidadoso, mas vale a pena o esforço, uma vez que qualquer diferença mensurável entre os espectros de hidrogênio e de anti-hidrogênio poderia romper princípios básicos da física e, provavelmente, ajudar a entender o quebra-cabeças da assimetria matéria-antimatéria, o maior desequilíbrio e um dos maiores enigmas do Universo.

O resultado da experiência ALPHA é a primeira observação de uma linha espectral de um átomo de anti-hidrogênio, permitindo que o espectro de luz da matéria e da antimatéria sejam comparados pela primeira vez. Dentro dos limites experimentais, o resultado não mostra diferença em relação à linha espectral equivalente no hidrogênio.

Isso é consistente com o Modelo Padrão de Física de Partículas, a teoria que melhor descreve as partículas e as forças em ação entre elas, que prediz que hidrogênio e o anti-hidrogênio devem ter características espectroscópicas idênticas.

A colaboração ALPHA espera melhorar a precisão de suas medições no futuro. A medição do espectro do anti-hidrogênio com alta precisão oferece uma nova e extraordinária ferramenta para testar se a matéria se comporta de forma diferente da antimatéria e, assim, testar ainda mais a robustez e a fiabilidade do Modelo Padrão.

ALPHA é uma experiência única nas instalações do Antiproton Decelerator no CERN, e é capaz de produzir átomos de anti-hidrogênio e de mantê-los numa armadilha magnética especialmente projetada, manipulando anti-átomos, uns tantos de cada vez. Armadilhar átomos de anti-hidrogênio permite que estes sejam estudados utilizando laseres ou outras fontes de radiação.

“Mover e armadilhar antiprótons ou posítrons é fácil porque são partículas com carga elétrica”, explicou Hangst. “Mas quando se combinam os dois, obtém-se anti-hidrogênio neutro, que é muito mais difícil de capturar, então concebemos uma armadilha magnética muito especial que se baseia no fato do anti-hidrogênio ser ligeiramente magnético.”

O anti-hidrogênio é produzido misturando plasmas de cerca de 90.000 antiprótons do Antiproton Decelerator com posítrons, resultando na produção de cerca de 25.000 átomos de anti-hidrogênio por cada tentativa. Os átomos de anti-hidrogênio podem ser capturados caso estejam se movendo lentamente, quando são gerados.

Usando uma nova técnica pela qual a colaboração empilha anti-átomos resultantes de dois ciclos de mistura sucessivos, é possível capturar em média 14 anti-átomos por ensaio, em comparação com apenas 1,2 com os métodos anteriores. Ao iluminar os átomos presos com um feixe de laser numa frequência sintonizada com precisão, os cientistas podem observar a interação do feixe com os estados internos de anti-hidrogênio.

A medição foi feita observando-se a chamada transição 1S-2S. O estado 2S no hidrogênio atômico é de longa duração, levando a uma largura estreita da linha natural, efeito pelo qual se mostra particularmente adequado para a medição de precisão.

O resultado atual, juntamente com os limites recentes na proporção da massa antipróton-elétrons estabelecida pela colaboração ASACUSA e a relação carga-massa antipróton determinada pela colaboração BASE, demonstram que os testes de simetrias fundamentais com a antimatéria no CERN estão amadurecendo rapidamente.

Um artigo sobre a pesquisa foi publicado na revista Nature.

Fonte: CERN

terça-feira, 4 de outubro de 2016

Transições de fase topológica da matéria

O prêmio Nobel de Física de 2016 foi para o trio de cientistas britânicos David J. Thouless, F. Duncan M. Haldane e J. Michael Kosterlitz pelas descobertas teóricas das transições de fase topológica da matéria.

Pretzel

© DevianArt (pretzel estilizado)

Os três cientistas britânicos estão hoje baseados nos Estados Unidos. Thouless, nascido em 1934, é hoje professor emérito da Universidade de Washington. Haldane, nascido em 1951, é professor da Universidade Princeton. E Kosterlitz, nascido em 1942, é professor da Universidade Brown.

As pesquisas, que revelaram características da chamada "matéria exótica", podem ter aplicações futuras na eletrônica.

Suas descobertas permitiram avanços na compreensão teórica dos mistérios da matéria e criaram novas perspectivas para o desenvolvimento de materiais inovadores.

As transições de fase ocorrem quando as fases da matéria transitam entre si, como quando o gelo derrete e se torna água. As fases mais comuns da matéria são gás, líquido e sólido. Mas, em temperaturas extremamente altas ou baixas, a matéria pode assumir outros estados exóticos.

O que os laureados fizeram foi revelar os segredos dessa matéria em estado exótico. Eles criaram métodos matemáticos para estudar essas fases incomuns da matéria que ocorrem, por exemplo, em supercondutores, superfluidos e filmes finos magnéticos.

A topologia é o ramo da matemática que descreve as propriedades da matéria que mudam apenas passo a passo. "O pão não tem buraco, o bagel tem um buraco e o pretzel tem dois buracos. O número de buracos é algo que chamamos de invariável topológica," disse Thors Hans Hansson, um dos membros do comitê do prêmio Nobel de Física . Isso é chamado invariável porque não é possível ter um estágio intermediário entre um buraco e dois buracos (não existe meio buraco, por exemplo).

No início de 1970, Michael Kosterlitz e David Thouless derrubou a teoria então vigente que a supercondutividade não poderia ocorrer em camadas finas. Eles demonstraram que a supercondutividade pode ocorrer a baixas temperaturas e também explica o mecanismo da transição de fase, que faz desaparecer a supercondutividade a temperaturas mais elevadas.

Na década de 1980, Thouless foi capaz de explicar uma experiência anterior com camadas eletricamente condutoras muito finas em que a condutância foi precisamente medida através da topologia. Simultaneamente, Duncan Haldane descobriu como conceitos topológicos podem ser utilizados para compreender as propriedades das cadeias de pequenos ímãs encontrados em alguns materiais.

Agora sabemos de muitas fases topológicas, não apenas em camadas finas, mas também em materiais tridimensionais comuns. Durante a última década, esta área tem impulsionado a pesquisa em física da matéria condensada.

A esperança, segundo a Academia Real de Ciências da Suécia, é que as pesquisas possam ser usadas em novas gerações de eletrônicos e supercondutores, ou em futuros computadores quânticos.

Fonte: The Royal Swedish Academy of Sciences

terça-feira, 16 de agosto de 2016

Vácuo quântico atua na rotação dos pulsares

A resistência ao movimento oferecida pelo vácuo pode estar desacelerando a rotação ultrarrápida das estrelas de nêutrons que constituem os pulsares.

ilustração de um pulsar

© NASA (ilustração de um pulsar)

A instigante hipótese, resultante de um estudo realizado pelos pesquisadores brasileiros: Jaziel Goulart Coelho, pós-doutorando do Instituto Nacional de Pesquisas Espaciais (INPE), Jonas Pedro Pereira, atualmente pós-doutorando da Universidade Federal do ABC (UFABC), e José Carlos Neves de Araújo, pesquisador titular do INPE.

As observações astronômicas informam que, a cada segundo, o período de rotação dos pulsares atrasa de um centésimo trilionésimo (10-14) a um décimo trilionésimo (10-13) de segundo. O mecanismo clássico de perda de energia, por radiação de dipolo magnético, não é suficiente para explicar esse atraso. É preciso considerar algo mais. Este estudo possibilitou concluir que esse componente adicional poderia ser a frenagem exercida pela fricção do vácuo quântico.

Na mecânica quântica o vácuo não é realmente vazio, mas permeado por flutuações. Neste meio, extremamente dinâmico, flutuações locais de potencial produzem o tempo todo pares de partículas e antipartículas, que se aniquilam em seguida. Assim, por mais tênue que possa ser o espaço interestelar, seu efeito sobre corpos altamente compactos em rotação, como as estrelas de nêutrons, não seria negligenciável.

Já foram identificados cerca de 2 mil pulsares. Mas, devido a grandes dificuldades no processo de observação, apenas nove deles têm os seus parâmetros bem estabelecidos.

Os pesquisadores reuniram os dados relativos a estes nove pulsares, registrados na literatura, utilizando conceitos da física fundamental. Eles constataram que, além da perda de energia devida à radiação eletromagnética, um outro fator poderia estar contribuindo para a desaceleração do movimento de rotação: a fricção do vácuo quântico.

Os períodos de rotação dos pulsares, bem como suas variações temporais, são determinados observacionalmente. A partir deles, é possível calcular o chamado índice de frenagem, caracterizado pelo atraso de 10-14 a 10-13 segundo por segundo. Para explicar este índice, os pesquisadores combinaram dois mecanismos de perda de energia: a radiação de dipolo magnético clássica e a fricção do vácuo quântico.

Nota-se que a produção de calor está intrinsecamente associada à fricção do vácuo quântico. Esta é uma das consequências da interação de um campo magnético muito forte com um meio supermagnetizado. O calor surge do atrito do vácuo com a superfície da estrela, da mesma forma que o movimento de uma pá na água por um longo tempo pode aquecê-la.

Aqui, convém apresentar um resumo do estado atual dos conhecimentos acerca dos pulsares. A primeira observação de um objeto desse tipo foi feita em 1967 pela astrofísica irlandesa Jocelyn Bell, que então realizava sua pesquisa de doutorado. O objeto, localizado na Nebulosa do Caranguejo, foi detectado como fonte de uma emissão eletromagnética, na faixa de frequências do rádio, constituída por pulsos extremamente regulares, tão regulares que chegou a se cogitar, na época, que poderiam ser provenientes de uma civilização extraterrestre.

Sabe-se agora que esses pulsos são produzidos por estrelas de nêutrons em rotação. Estas constituem o estágio terminal do ciclo evolutivo de estrelas que iniciaram suas vidas com massas da ordem de grandeza de oito a 25 massas solares. Em um dado momento de sua evolução, tais estrelas explodem como supernovas, ejetando ao meio exterior a maior parte do material que as constitui. Depois, tendo-se encerrado o processo de fusão nuclear, cuja pressão de dentro para fora contrabalançava a atração gravitacional, o material remanescente entra em colapso e começa a se compactar cada vez mais. A contração gravitacional é tanta que os elétrons se fundem com os prótons dando origem a nêutrons, altamente aglutinados. Forma-se, assim, uma estrela de nêutrons, cuja densidade é cerca de 1015 g/cm³. Isso significa que cada centímetro cúbico da estrela tem 100 milhões de toneladas de massa! Massas equivalentes a uma vez e meia a massa do Sol se comprimem em esferas com não mais de 20 quilômetros de raio.

Uma das consequências da contração é que a estrela passa a girar cada vez mais rápido. Isso se deve a uma regularidade no comportamento da matéria que recebe em física o nome de “princípio de conservação do momento angular”. O momento angular relaciona a massa, o quadrado do raio e a velocidade angular. Como a massa e o raio diminuem drasticamente, é preciso que a velocidade angular aumente muito para que o momento angular se mantenha constante. Existem pulsares extremamente rápidos, com períodos de rotação da ordem do milissegundo (10-3 s); pulsares intermediários, com períodos que vão do centésimo ao décimo de segundo (10-2 a 10-1 s); e pulsares mais lentos, com períodos de um a dez segundos (100 a 10 s).

Outra consequência da contração é que o campo magnético da estrela se intensifica tremendamente. Isso decorre do chamado “princípio de conservação de fluxo”. Uma vez que a área da superfície do astro diminui, para que o fluxo magnético se conserve, o campo deve crescer com o quadrado da razão entre o raio anterior e o raio resultante. Assim, o campo magnético das estrelas de nêutrons pode atingir valores da ordem de cem milhões (108) a um quatrilhão (1015) de Gauss. Para efeito de comparação, a magnitude do campo magnético na superfície da Terra é da ordem de 0,25 a 0,65 Gauss.

Embora os primeiros pulsares tenham sido detectados na faixa do rádio, as estrelas de nêutrons emitem em todas as frequências do espectro eletromagnético: rádio, micro-ondas, infravermelho, luz visível, ultravioleta, raios X, raios gama. Porém, só podem ser percebidas como pulsares, isto é, como objetos pulsantes, quando o eixo de seu campo magnético não coincide com o seu eixo de rotação. O motivo é que a emissão ocorre a partir dos polos magnéticos. Quando os eixos coincidem, o feixe de fótons aponta sempre na mesma direção. Quando não coincidem, o feixe de fótons varre diferentes regiões do espaço durante a rotação. Cada vez que ele aponta para o observador terrestre, isso é percebido como um pulso. O fenômeno é parecido com o dos pulsos luminosos emitidos pelos faróis que orientam os navios.

Este estudo possibilitou prever a inclinação do campo magnético do pulsar em relação ao eixo de rotação e também a evolução do campo magnético ao longo do tempo. No cenário clássico, de radiação de dipolo magnético puro, o campo deve aumentar de forma a explicar os índices de frenagem observados.

Segundo os pesquisadores, a fricção do vácuo quântico tornar-se-ia especialmente relevante em pulsares com campos magnéticos muito intensos, de 1012 a 1013 Gauss, e que, por já terem perdido bastante rotação, apresentem períodos mais longos, de um a 10 segundos.

Ao considerar a fricção do vácuo quântico, este estudo acrescentou um importante elemento ao modelo clássico de transferência de energia dos pulsares, baseado apenas na radiação eletromagnética. Mas os pesquisadores estão realizando agora um terceiro mecanismo de transferência, que é o da emissão de ondas gravitacionais.

Fonte: The Astrophysical Journal

segunda-feira, 8 de agosto de 2016

A luz poderá existir em nova forma

Uma nova pesquisa sugere que é possível originar uma nova forma de luz ao ligá-la a um único elétron, que combina as propriedades desta partícula da matéria com as da luz.

luz capturada na superfície de um isolador topológico

© V. Giannini (luz capturada na superfície de um isolador topológico)

De acordo com os cientistas que desenvolveram este estudo no Imperial College London, a luz e o elétron acoplados terão propriedades que podem levar à fabricação de circuitos que trabalham com fótons em vez de elétrons.

Também provavelmente permitirá o estudo dos fenômenos físicos quânticos que regem as partículas subatômicas, mas numa escala visível.

Em materiais normais, a luz interage com uma série de elétrons dispostos na superfície e no interior do material. Mas usando a física teórica para modelar o comportamento da luz e um tipo recém-descoberto de materiais designados isoladores topológicos, os pesquisadores do Imperial College London descobriram que esta poderá interagir apenas com um elétron na superfície.

Isso produziria um acoplamento que funde algumas das propriedades da luz e do elétron. Normalmente, a luz viaja em linha reta, mas, quando ligada ao elétron irá, em vez disso, acompanhar o seu percurso, seguindo a superfície do material.

No estudo o Dr. Vincenzo Giannini e seus colegas modelaram essa interação em torno de uma nanopartícula feita de um isolante topológico.

Os modelos demonstraram que a luz adquire algumas propriedades do elétron e que, circulando a partícula, o elétron também adquire algumas das propriedades da luz.

Normalmente, como os elétron viajam ao longo dos materiais, tais como os constituintes dos circuitos elétricos, eles param quando confrontados com um defeito. No entanto, a equipe do Dr. Giannini descobriu que mesmo que houvesse imperfeições na superfície da nanopartícula, o elétron ainda seria capaz de prosseguir com a ajuda da luz.

Se este comportamento puder ser adaptado aos circuitos fotônicos, estes seriam mais robustos e menos vulneráveis a perturbações e imperfeições físicas.

“Os resultados desta pesquisa terão um enorme impacto sobre a forma como concebemos a luz, os isoladores topológicos só foram descobertos na última década, mas já nos proporcionam novos fenômenos para estudar e novas maneiras de explorar conceitos importantes na física,” disse Giannini.

Acrescentou que deve ser praticável observar os fenômenos que ele modelou em experiências recorrendo à tecnologia atual, e a equipe está trabalhando com os físicos experimentais para tornar isso uma realidade.

Ele considera que o processo que origina esta nova forma de luz pode ser ampliado de modo a que o fenômeno possa ser observado com incomparável facilidade.

Atualmente, os fenômenos quânticos só podem ser observados quando se estudam objetos muito pequenos ou objetos que foram muito arrefecidos, mas esta provável descoberta poderá permitir aos cientistas estudar estes comportamentos à temperatura ambiente.

Fonte: Nature Communications

sexta-feira, 15 de julho de 2016

Vibrações inesperadas em nanomaterial

Um grupo de físicos brasileiros observou pela primeira vez em detalhe como os átomos vibram nas bordas de um material de dimensões nanométricas feito exclusivamente a partir do elemento químico fósforo, conhecido como fósforo negro.

cristal de fósforo negro

© MackGraphe (cristal de fósforo negro)

A imagem mostra o cristal de fósforo negro observado ao microscópio de força atômica: as cores na borda superior indicam a intensidade de vibração de átomos, que é maior nas áreas em vermelho, e menor, nas áreas azuladas.

O fósforo negro, esse material não é encontrado na natureza. Foi sintetizado pela primeira vez em 1914, mas suas propriedades com potencial aplicação em nanotecnologia só começaram a ser descobertas um século mais tarde.

A equipe coordenada pelo físico brasileiro Christiano de Matos descreve uma anomalia no padrão de vibrações que jamais havia sido observada em blocos tão diminutos de fósforo negro nem em outros materiais com dimensões nanométricas, como o grafeno, formado por uma só camada de átomos de carbono e uma das grandes promessas da nanotecnologia. “As bordas do grafeno apresentam algumas propriedades peculiares, mas as vibrações atômicas são iguais às do restante do cristal”, conta Matos, físico do Centro de Pesquisas Avançadas em Grafeno, Nanomateriais e Nanotecnologias (MackGraphe) da Universidade Presbiteriana Mackenzie.

Segundo o pesquisador, por ora é difícil dizer se essas alterações na vibração podem ajudar ou atrapalhar o design de um dispositivo nanotecnológico, como um transistor ou um sensor de luz. Entretanto, o projeto de qualquer dispositivo terá de levar essas vibrações de borda em consideração.

Na escala dos objetos medidos em milionésimos de milímetros (nanômetros), as vibrações atômicas estão estreitamente relacionadas a várias propriedades dos materiais, em especial, à dissipação de calor. São as vibrações que carregam o calor de um lado para outro do material.

Desde que as primeiras propriedades com potencial uso em nanotecnologia do fósforo negro começaram a ser identificadas, em 2014, o interesse dos pesquisadores de diversas áreas por esse material vem crescendo. Chamam a atenção a sua capacidade de conduzir eletricidade e, principalmente, a de emitir e absorver luz em vários comprimentos de onda, propriedade que varia segundo a espessura do cristal de fósforo negro. São essas propriedades que, de acordo com especialistas, podem tornar o seu uso mais vantajoso do que o do grafeno em nanofotônica.

Em termos estruturais, o fósforo negro é semelhante à grafite, o mesmo material usado em lápis. Tanto um quanto outro são formados por folhas de apenas um átomo de espessura empilhadas umas sobre as outras, as camadas monoatômicas de fósforo são chamadas de fosforeno, e as de carbono recebem o nome de grafeno.

Mas as propriedades especiais desses materiais aparecem sob condições distintas. A alta resistência mecânica e a boa capacidade de conduzir calor ou eletricidade do carbono aparecem principalmente quando este elemento químico está disposto em uma folha de um só átomo de espessura, ou seja, encontra-se na forma de grafeno. Já com o fósforo negro é diferente. Suas propriedades se tornam evidentes à medida que os pesquisadores esfoliam o material e chegam a uma dezena (ou até menos) de camadas empilhadas. Essa característica pode permitir controlar mais facilmente as propriedades do material simplesmente adicionando ou eliminando camadas.

Em experimentos conduzidos no MackGraphe, o estudante de doutorado Henrique Ribeiro, orientado por Matos e pelos físicos Marcos Pimenta, da Universidade Federal de Minas Gerais, e Eunézio Antônio de Souza, do MackGraphe, fez feixes de laser incidirem sobre amostras de fósforo negro compostas de diferentes números de camadas atômicas, com espessura variando de 6 a 300 nanômetros. Parte dessa luz é absorvida e parte é espalhada pelos átomos do material. A luz absorvida fornece energia para os átomos vibrarem, alterando as propriedades, em especial, a frequência e a polarização da luz espalhada.

Em seguida, os pesquisadores compararam as medições feitas no experimento com os resultados de simulações feitas pelo físico Cesar Pérez Villegas, que faz estágio de pós-doutorado sob a supervisão de Alexandre Rocha no Instituto de Física Teórica da Universidade Estadual Paulista (Unesp), em São Paulo. Da comparação, os físicos deduziram como os átomos vibravam ao receber o laser e concluíram que, nas bordas do fósforo negro, os átomos oscilavam de maneira específica, distinta daquela dos átomos do restante do material. Essas vibrações de borda apareceram em todas as amostras, independentemente de sua espessura.

Experimentos semelhantes ao feito agora com o fósforo negro já haviam sido realizados com o grafeno e mostrado que, embora seus átomos vibrem da mesma maneira tanto na borda como em seu interior, a luz espalhada nas bordas deste material pode apresentar frequência diferente da espalhada por seu miolo. A vibração dos átomos viaja pelo material na forma de ondas. No grafeno, a borda funciona como um espelho em que a onda bate e volta refletida. É essa reflexão que modifica a frequência da luz espalhada. Já no fósforo negro, a vibração diferente é explicada por um leve deslocamento dos átomos na borda das camadas de fosforeno. “No fosforeno, os átomos da borda têm uma posição de equilíbrio diferente da dos átomos do meio do material”, conta Matos. “Isso os faz vibrar de modo distinto.”

Fonte: Nature Communications