domingo, 15 de fevereiro de 2015

Curvatura quântica da luz

A luz viajando perto de um objeto é desviada de seu caminho por causa da força da gravidade.

curvatura quântica da luz

© NASA (curvatura quântica da luz)

Para um objeto de grande massa como o Sol, este desvio é mensurável. As melhores medições até o momento mostram que a atração gravitacional do Sol desvia a luz por 0,00049º de acordo com as previsões da relatividade geral. Agora Niels Bjerrum-Bohr, do Instituto Niels Bohr, na Dinamarca, e colegas calcularam como esse desvio seria alterado quando a gravidade é descrita como um campo quântico.

Os autores descrevem a gravidade usando uma teoria de campo eficaz, uma aproximação de baixa energia de uma possível teoria quântica de campo subjacente da gravidade. Isto permitiu-lhes computar a junção de fótons com efeitos gravitacionais, formulando uma solução analítica para o problema da deflexão da luz por um objeto pesado, como o Sol ou um buraco negro de Schwarzschild. Embora a sua correção quântica predita é demasiado pequena para ser medido experimentalmente, onde o efeito da gravidade é 80 ordens de grandeza maior, eles mostram que os efeitos quânticos causam uma diferença. Esta diferença decorre do fato de que as partículas sem massa como fótons não estão mais restritas a viajar exatamente sobre geodésicas, ou seja, na relatividade geral, as linhas retas modificados pela curvatura do espaço-tempo ao longo de qualquer movimento de partículas em queda livre. Em particular, elas são previstas para dobrar de forma diferente dependendo da sua rotação.

Estas alterações do comportamento previsto pela relatividade geral denota o desvio do princípio da equivalência de Einstein. A estrutura computacional apresentada pelos autores fornece uma maneira simples de avaliar os possíveis efeitos da gravidade quântica em e outros fenômenos cosmológicos.

Fonte: Physical Review Letters

Nenhum comentário:

Postar um comentário