quinta-feira, 4 de julho de 2013

Força de Van der Walls é medida diretamente

Cientistas na França são os primeiros a fazer uma medição direta da força de Van der Waals entre dois átomos.

pata de lagartixa apoiada num vidro

© Bjørn Christian Tørrissen (pata de lagartixa apoiada num vidro)

Eles fizeram isso, aprisionando dois átomos de Rydberg com um laser e, em seguida, mediram a força em função da distância que os separa. Os dois átomos estavam em um estado quântico coerente e os pesquisadores acreditam que seu sistema poderia ser usado para criar portas lógicas quânticas ou realizar simulações quânticas de sistemas da matéria condensada.
A força de Van der Waals entre átomos, moléculas e superfícies faz parte da vida cotidiana de muitas maneiras diferentes. Aranhas e lagartixas a utilizam para subir paredes lisas, por exemplo, e também  dentro de nossos corpos elas ocorrem na duplicação das proteínas.
Nomeada em homenagem ao cientista holandês Johannes Diderik van der Waals, quem primeiro propôs em 1873 para explicar o comportamento dos gases, é uma força muito fraca, que só se torna relevante quando moléculas e átomos  estão muito próximos uns dos outros. Flutuações na nuvem eletrônica de um átomo significa que ele vai ter um momento de dipolo instantâneo. Isto pode induzir um momento de dipolo em um átomo disponível, sendo o resultado de uma interação atrativa dipolo-dipolo.
Houve muitas medidas indiretas das forças de Van der Waals entre os átomos. Exemplos incluem a análise das forças líquidas em corpos macroscópicos ou na espectroscopia para verificar o comportamento de longo alcance da força entre dois átomos em uma molécula diatômica. No entanto, a medição direta iludiu os cientistas até agora.
Esta última pesquisa foi feita por pesquisadores do Laboratoire Charles Fabry (LCF) e da Universidade de Lille. "O que temos feito aqui, pela primeira vez ao nosso conhecimento, é medir diretamente a interação de Van der Waals entre dois átomos individuais que estão localizados a uma distância controlada", diz Thierry Lahaye, que faz parte da a equipe LCF.
Controlando a distância entre os átomos normais, enquanto se mede a força entre elas, é extremamente difícil, porque as distâncias relevantes são pequenas. Para contornar este problema, a equipe usou átomos de Rydberg, que são muito maiores do que os átomos normais. Esses átomos têm um elétron em um estado excitado. Isto significa que eles têm um grande momento de dipolo instantâneo, e, portanto, deve ter muitas interações fortes de Van der Waals em distâncias relativamente longas. Eles também têm propriedades únicas que lhes permitem ser controlado com uma grande precisão no laboratório.
A experiência começa com dois átomos de rubídio presas em dois feixes de laser focado estreitamente separadas por alguns micrômetros. A luz laser no comprimento de onda específico é então aplicada nos átomos, que leva o sistema a oscilar entre o estado fundamental e um ou dois átomos de Rydberg. A equipe descobriu que, quando as condições eram perfeitas, o sistema oscila entre o estado fundamental e um par de átomos de Rydberg, um em cada foco do laser. Ao medir essas oscilações, a equipe analisou o vigor da força de Van der Waals entre os dois átomos de Rydberg.
Ao ajustar a precisão do feixe de laser, a equipe conseguiu mover os átomos de Rydberg mais próximos ou mais distantes. Ao mudar a distância R entre os átomos, a força variou 1/R6, exatamente como esperado pela força de Van der Waals.
Além da medição da força, a equipe também foi capaz de mostrar que a evolução quântica do estado dos dois átomos de Rydberg interagindo foi totalmente coerente, algo que "nunca foi visto na física atômica", afirma Antoine Browaeys, membro do grupo LCF.
Assim como a lógica quântica
Esta evolução coerente de dois átomos interagindo é idêntica à de um porta lógica quântica em funcionamento em dois bits quânticos (qubits).
Com efeito, o significado a longo prazo desta experiência não é a medida da força em si, mas sim ao elevado grau de controle dos átomos de Rydberg que tenham alcançado. "Isso nos permitirá projetar pequenos sistemas quânticos de tamanho crescente, de dois a algumas dezenas de átomos de Rydberg, sobre os quais temos controle total das interações", explica Lahaye.
Tais sistemas podem encontrar uso no processamento de informação quântica ou na simulação quântica de sistemas da matéria condensada, como ímãs quânticos.
Steven Rolston do Joint Quantum Institute da Universidade de Maryland, que não esteve envolvido no estudo, chama o trabalho um marco importante para a criação de dispositivos de informação quântica, porque mostra que a interação de Van der Waals entre qubits atômicas se comporta como esperado.

Fonte: Physical Review Letters

Nenhum comentário:

Postar um comentário