domingo, 11 de novembro de 2012

Explorando a transição de fótons

Objetos quânticos são notavelmente esquivos. Tome um fóton como exemplo.

explorando a contínua transição de fótons

© CNRS (explorando a contínua transição de fótons)

O quantum de luz pode agir como partícula, seguindo um caminho bem definido como se fosse um minúsculo projétil; e no momento seguinte agir como uma onda, sobrepondo-se a outras para produzir padrões de interferência muito parecidos com ondulações na água.
A dualidade onda-partícula é uma característica fundamental da mecânica quântica, uma que não se compreende facilmente nos termos intuitivos da experiência cotidiana. Mas a natureza dupla de entidades quântico-mecânicas fica ainda mais estranha. Novos experimentos demonstram que fótons não apenas mudam de ondas para partículas, e de volta para ondas; mas que podem, na verdade, exibir tendências de ondas e partículas ao mesmo tempo. De fato, um fóton pode atravessar um complexo aparato ótico e desaparecer para sempre em um detector sem ter decidido sua identidade – assumindo uma natureza de onda ou partícula só depois de já ter sido destruído.
Há poucos anos, físicos mostraram que um fóton “escolhe” se quer agir como onda ou partícula quando é forçado a isso. Se, por exemplo, um fóton for enviado a um de dois caminhos por um divisor de feixes (uma espécie de bifurcação na estrada ótica), e cada um desses caminhos levar a um detector de fótons, o fóton terá a mesma probabilidade de aparecer em qualquer um dos detectores. Em outras palavras, o fóton simplesmente escolhe uma das rotas e a segue até o fim, como uma bolinha de gude em um tubo. Mas se os caminhos divididos se recombinarem antes dos detectores, permitindo que os conteúdos dos dois canais interfiram como ondas que fluem ao redor de um pilar e se reencontram do outro lado, um fóton demonstra efeitos de interferência ondulatória, essencialmente passando pelos dois caminhos ao mesmo tempo. Se você mede um fóton como uma onda, ele age como uma. 
Pode-se suspeitar que os fótons simplesmente assumem um ou outro comportamento – onda ou partícula – com antecedência, ou quando atingem o divisor de feixes. Mas um experimento de 2007 sobre a “escolha tardia” eliminou essa possibilidade. Físicos usando um interferômetro, um dispositivo experimental que inclui o divisor de feixes, alternaram entre combinar os caminhos e mantê-los separados. Mas eles só decidiam entre um ou outro depois de o fóton ter passado pelo divisor de ondas. Mesmo assim os fótons demonstraram efeitos de interferência quando recombinados, ainda que (pelo menos em um mundo simples) as partículas já devessem ter sido forçadas a escolher qual caminho tomar.
Agora dois grupos de pesquisa utilizaram uma versão ainda mais bizarra do experimento de escolha tardia. Em dois estudos publicados na edição de novembro da Nature, uma equipe sediada na França e um grupo da Inglaterra relataram usar um interruptor quântico para modificar o dispositivo experimental. Exceto que, nesse experimento, o interruptor só foi ativado – assim forçando o fóton a agir como onda ou como partícula – depois que os físicos já haviam identificado o fóton em um dos detectores.
Ao mudar as configurações do dispositivo, as duas equipes não apenas conseguiram forçar o fóton experimental a se comportar como partícula ou onda, mas também conseguiram explorar estados intermediários. “Podemos mudar o comportamento do fóton de teste, de onda para partícula, continuamente”, declara Sébastien Tanzilli, coautor do estudo e físico especializado em ótica quântica do Centro Nacional de Pesquisas Físicas (CNRS) em Paris, que atualmente está na Universidade de Nice Sophia Antipolis. “Entre os dois extremos, nós temos estados que surgem com interferência reduzida. Então temos uma superposição de onda e partícula”.
A chave dos dois experimentos é o uso de um interruptor quântico no aparato, que permite ao interferômetro ficar em superposição para medir comportamentos ondulatórios ou particulados. “Nos tradicionais experimentos de escolha tardia, sempre há um grande interruptor binário clássico em algum lugar do aparato”, explica Peter Shadbolt, coautor do outro estudo e aluno de doutorado em mecânica quântica da University of Bristol, na Inglaterra. “Ele tem ‘onda’ escrito de um lado e ‘partícula’ do outro. O que fazemos é substituir o interruptor clássico com um qubit, um bit quântico, que é um segundo fóton em nosso experimento”.
O interruptor quântico determina a natureza do aparato – se os dois caminhos óticos se recombinam para formar um interferômetro fechado, que mede propriedades ondulatórias, ou se permanecem separados para formar um interferômetro aberto, que detecta partículas discretas. Mas em ambos os casos a abertura ou fechamento do interferômetro – e a passagem do fóton pelo aparato como partícula ou onda, respectivamente – não era determinada até que os físicos medissem um segundo fóton. O destino do primeiro fóton estava ligado ao estado do segundo pelo fenômeno do emaranhamento quântico, em que objetos quânticos compartilham propriedades correlatas. 
No experimento do grupo de Bristol, o estado do segundo fóton determina se o interferômetro está aberto, fechado, ou em uma superposição de ambos, o que por sua vez determina a identidade de partícula do primeiro fóton. “Em nosso caso, essa escolha está mais para uma escolha quântica”, observa Shadbolt. “Sem esse tipo de abordagem, não seríamos capazes de ver essa transformação entre onda e partícula”.
O dispositivo construído pelo grupo de Tanzilli funciona de maneira semelhante, o interferômetro fica fechado para fótons verticalmente polarizados (agem como ondas) e aberto para fótons horizontalmente polarizados (que se comportam como partículas). Tendo enviado um fóton de teste pelo aparato, os pesquisadores mediram um companheiro emaranhado do fóton 20 nanosegundos depois, para determinar a polarização do fóton de teste e assim identificar em qual dos lados da divisão onda-partícula ele estava.
Graças à estrutura do experimento e à natureza do emaranhamento, a natureza de onda ou partícula do fóton de teste só foi determinada quando o segundo fóton foi medido – em outras palavras, 20 nanosegundos depois do fato. “O fóton de teste nasce no interferômetro e é detectado, o que significa que é destruído”, aponta Tanzilli. “Depois disso, determinamos seu comportamento”.  Essa ordem de operações leva o conceito de escolha tardia ao extremo. “Isso significa que espaço e tempo parecem não ter qualquer papel nesse caso”, adiciona Tanzilli.
O pesquisador de informações quânticas Seth Lloyd, do Massachusetts Institute of Technology, em um comentário para a Science que acompanhava os dois artigos, batizou o fenômeno de “procrastinação quântica”, ou “proquanstinação”. “Na presença do emaranhamento quântico (no qual os resultados das medidas são mantidos juntos)”, escreveu ele, “é possível evitar tomar uma decisão, mesmo se os eventos parecerem já terem feito isso”.
Os novos experimentos adicionam outra ruga no estranho mundo da mecânica quântica, onde um fóton aparentemente pode ser o que quiser, quando quiser. “Feynman dizia que esse era o verdadeiro mistério da mecânica quântica”, lembra Shadbolt, falando sobre a dualidade onda-partícula. A mecânica quântica é profundamente estranha, completamente sem análogos clássicos, e tudo o que podemos fazer é aceitá-la assim.

Fonte: Scientific American Brasil

terça-feira, 9 de outubro de 2012

Prêmio Nobel é atribuído à pesquisa quântica

O francês Serge Haroche e o americano David Wineland ganharam nesta terça-feira o prêmio Nobel de Física, segundo anunciou a Academia Real das Ciências da Suécia.

gato de Schrödinger

© Nobelprize.org (gato de Schrödinger)

Uma questão central na física quântica é a transição entre o mundo quântico e clássico. Esta questão é ilustrada de uma maneira popular, pelo chamado paradoxo do gato de Schrödinger. Este nome refere-se a um experimento proposto por Schrödinger em 1935, destacando a dificuldade em aplicar os conceitos da mecânica quântica para a vida cotidiana.

Os dois cientistas foram agraciados pelo trabalho na avaliação e manipulação de partículas individuais preservando sua natureza quântica, através de revolucionários métodos experimentais que permitem avaliar e manipular sistemas quãnticos individuais.

Estas pesquisas possibilitará construir um sistema de computadores mais rápido do que o atual por meio da física quântica. Há, ainda, a expectativa de que as pesquisas de Haroche e Wineland permitam analisar, controlar e até contar as partículas quânticas.

As primeiras pesquisas utilizando física quântica também levaram à possibilidade de criação de relógios extremamente precisos, estabelecendo um novo padrão, marcando o tempo com precisão cem vezes maior do que os relógios atuais de Césio.

Este ano, o Prêmio Nobel de Física honra as invenções e descobertas experimentais que permitiram a medição e controle de sistemas quânticos individuais. Eles pertencem a duas tecnologias distintas, porém relacionadas: íons em uma armadilha harmônica e fótons em uma cavidade.
Existem várias semelhanças interessantes entre os dois. Em ambos os casos, os estados quânticos são observados por meio de sistemas de dois níveis acoplados a um oscilador harmônico quantizado, um problema descrito pelo assim chamado Hamiltoniano Jaynes-Cummings. O sistema de dois níveis é constituído por um íon (com dois níveis acoplados por meio de luz laser) ou um átomo altamente excitado (com dois níveis de Rydberg acoplados por meio de um campo de microondas). O oscilador harmónico quantizado descreve o movimento dos íons na armadilha ou o campo de microondas no interior da cavidade.

Serge HAROCHE. Médaille d'Or du CNRS 2009.David Wineland

© CNRS e NIST (Serge Haroche e David Wineland)

Haroche nasceu em 1944 em Casablanca (Marrocos) e atualmente é catedrático de Física Quântica no Colégio da França e na Escola Normal Superior, ambos em Paris. Enquanto, o americano Wineland também nasceu em 1944 e trabalha no Instituto Nacional de Padrões e Tecnologia (NIST) de Boulder (Colorado, EUA).

Os vencedores deste prêmio, dotado com 8 milhões de coroas suecas (cerca de R$ 2,5 milhões), é 20% menos que no ano passado.

A premiação do Nobel de Físisca será realizada, de acordo com a tradição, em Estocolmo no dia 10 de dezembro, coincidindo com o aniversário da morte de Alfred Nobel.

Fonte: Royal Swedish Academy of Sciences

domingo, 7 de outubro de 2012

Violando a simetria da inversão temporal

Prevista há meio século, a assimetria da inversão temporal na física de partículas só agora foi claramente demonstrada.

detector BaBar

© SLAC (detector BaBar)

As interações fracas de partículas elementares têm sido conhecida por serem assimétricas sob CP, a operação combinada de P paridade e de conjugação de carga C, a substituição de partículas por suas antipartículas. Mas a invariância absoluta sob CPT, a combinação de CP com reversão do tempo T, é um teorema alicerce do modelo padrão da teoria de partículas. Por isso, prevê que as interações fracas deve violar a invariância T para compensar a violação de CP. Mas só agora tem a primeira evidência clara e direta da violação de T. Durante uma década, até seu encerramento em 2008, o PEPII colisor elétron-pósitron no SLAC National Accelerator Laboratory, operado pela Universidade de Stanford, foram produzidos 200 milhões de pares de mésons B neutros em estados quânticos emaranhados de tal forma que o modo de decaimento de um méson B instantaneamente fixa o estado de seu parceiro, talvez um milímetro de distância. Carregando o pesado quark bottom, o méson B é cerca de cinco vezes a massa do próton, e que vive um mísero picosegundo. A equipe que utilizou o detector do colisor BaBar já explorou o emaranhamento para determinar que as taxas de transição entre os autoestados do méson B dependem da direção temporal de uma forma que só pode ser atribuída à violação da simetria de T. O sinal da violação de T corresponde a uma significância de 14 desvios padrão (σ), e a sua amplitude é consistente com a preservação da simetria CPT.

Fonte: Physics Today

sábado, 6 de outubro de 2012

Revelada imagem dos níveis de Landau

Físicos observaram diretamente os níveis de Landau pela primeira vez desde que foram teoricamente concebidos por Lev Davidovich Landau em 1930, laureado com o Prêmio Nobel em 1962.

nível de Landau obtido experimentalmente

© U. Warwick (nível de Landau obtido experimentalmente)

Os níveis de Landau são os níveis quânticos que determinam o comportamento dos elétrons em um forte campo magnético.

Utilizando espectroscopia de tunelamento, os cientistas da Universidade de Warwick e da Universidade Tohoku revelaram a estrutura em forma de anel interna desses níveis de Landau na superfície de um semicondutor. O desafio experimental era ter resolução espacial suficiente, a fim de superar a desordem intrínseca do material em que normalmente só permite a observação de estados esparsos. As imagens mostram claramente que Landau estava certo quando previu que, em um sistema limpo, os elétrons assumiriam a forma de anéis concêntricos, o número aumenta de acordo com seu nível de energia.
Este comportamento simples de contagem constitui a base do chamado efeito Hall quântico. Embora originalmente de interesse fundamental na maior parte, o efeito, nos últimos anos tem sido utilizado para definir o padrão para o que se entende por resistência elétrica e pode assim ser utilizado para definir o quilograma também. O professor Rudolf Roemer, do Departamento de Física da Universidade de Warwick, disse: "Este é um passo importante para nós, que estamos realmente vendo pela primeira vez funções de onda individuais da mecânica quântica de elétrons em materiais reais".

No entanto, a questão sobre o que define um quilograma está sendo debatido, com o espaçamento entre os anéis destes níveis de Landau agindo como uma espécie de marcador para um peso universal. Então da próxima vez que você medir o açúcar para fazer um bolo, você pode, sem saber, estar fazendo uso desses anéis quânticos!

A pesquisa foi publicado na revista Physical Review Letters.

Fonte: Phys.Org

Lei de Planck violada em nanoescala

Em uma nova experiência, uma fibra de sílica com 500 nm através de ter sido demonstrado que não obedecem à lei de Planck da radiação.

esquema do experimento

© Christian Wuttke (esquema do experimento)

Em vez disso, dizem os físicos austríacos Christian Wuttke e Arno Rauschenbeutel que realizaram o trabalho, a fibra aquece e resfria de acordo com uma teoria mais geral, que considera a radiação térmica como um fenômeno fundamentalmente granel. O trabalho pode levar a mais eficientes lâmpadas incandescentes e poderia melhorar a nossa compreensão da mudança climática da Terra, afirmam os pesquisadores.
A pedra angular da termodinâmica, a lei de Planck descreve como a densidade de energia em comprimentos de onda diferentes da radiação electromagnética emitida por um "corpo negro" varia de acordo com a temperatura do corpo. Foi formulado pelo físico alemão Max Planck, no início do século 20 utilizando o conceito de quantização de energia que foi de ir e servir como base para a mecânica quântica. Enquanto um corpo negro é um objeto, idealizada perfeitamente emitindo e absorvendo, a lei prevê previsões muito precisas para os espectros de radiação de objetos reais uma vez aquelas propriedades dos objetos de superfície, tais como cor e rugosidade, são levados em conta.
No entanto, os físicos já sabiam há décadas que a lei não se aplica a objetos com dimensões menores que o comprimento de onda da radiação térmica. Planck assumido que toda a radiação atingindo um corpo negro será absorvida na superfície do referido corpo, o que implica que a superfície é também um emissor perfeito. Mas, se o objeto não é grossa o suficiente, a radiação pode sair do outro lado do objeto em vez de ser absorvido, o que por sua vez reduz sua emissão.

Através da medição do tempo entre ressonâncias, os investigadores descobriram que a fibra ser de aquecimento e arrefecimento muito mais lentamente do que o previsto pela lei de Stefan-Boltzmann. Esta lei é uma conseqüência da lei de Planck e define como a potência total irradiada por um objeto está relacionada com a sua temperatura. Em vez disso, eles encontraram a taxa observada para ser um jogo muito próximo do previsto pela teoria conhecida como fluctuational eletrodinâmica, que leva em conta não apenas as propriedades de um corpo de superfície, mas também o seu tamanho e forma mais seu comprimento de absorção característica.

A pesquisa também pode melhorar a compreensão de como pequenas partículas na atmosfera, tais como os produzidos pela erosão do solo, a combustão ou erupções vulcânicas, contribuem para as alterações climáticas. Tais partículas pode esfriar a Terra, refletindo a radiação solar, ou aquecer a Terra, absorvendo a radiação térmica do nosso planeta, devido aos gases do efeito estufa.

Fonte: Physics World

quinta-feira, 27 de setembro de 2012

Criado novo elemento químico

Cientistas do Japão afirmam ter conseguido criar em laboratório o elemento químico de número atômico 113 (ou seja, que tem 113 prótons no seu núcleo).

decaimento do elemento 113

© RNC (decaimento do elemento 113)

Segundo o artigo, os pesquisadores do RIKEN Nishina Center for Accelerator-based Science (RNC) identificaram o 113 indiretamente, através de seis decaimentos alfa (ou seja, emitiu cinco partículas alfa, equivalentes ao núcleo do átomo de Hélio).

O novo elemento é considerado superpesado, ou seja, não é encontrado naturalmente na natureza e só pode ser feito em laboratório através de reatores nucleares ou aceleradores de partículas. Até agora, somente os Estados Unidos, Rússia e Alemanha haviam descoberto elementos superpesados.

Em 12 de agosto, os pesquisadores japoneses colocaram íons de zinco para viajar a 10% da velocidade da luz. Estes colidiram com uma fina camada de bismuto e o resultado foram íons muito pesados que foram seguidos por uma cadeia de diversos decaimentos alfa consecutivos. Foram estes que foram identificados como produto do 113° elemento.

Este feito colocam os pesquisadores do Japão no páreo pela paternidade do elemento 113, já que em 2004 e 2005 pesquisadores dos Estados Unidos e Rússia já tinham afirmado ter feito a descoberta, contudo estes observaram apenas quatro vezes a emissão de partículas alfa. Acontece que o 113 ao decair duas vezes vira dúbnio e o decaimento deste em laurêncio é bem conhecido pelos cientistas, e serve para provar a existência do novo elemento.

Curiosamente, é muito fácil achar tabelas periódicas com o elemento 113 descoberto em 2004. Contudo, a União Internacional de Química e Pura e Aplicada (IUPAC) não reconheceu o feito, como pode ser observado na tabela periódica.

Os cientistas japoneses afirmam que foram nove anos de procura por dados para provar a descoberta do 113. A próxima meta deles é encontrar um elemento ainda mais pesado, de número atômico 119.

Fonte: Journal of Physical Society of Japan

sábado, 11 de agosto de 2012

Congelamento de monopolos magnéticos

Os monopolos magnéticos são entidades onde o pólo norte e sul magnéticos estão separados, e não deveriam existir.

monopolo magnético

© Discovery (monopolo magnético)

Se você tentar dividir um ímã de barra no meio, tudo que você conseguirá são dois ímãs, cada um com um pólo norte e sul. Em anos recentes, no entanto, a existência de monopolos, pelo menos sob a forma de "quasipartículas" consistindo de excitações coletivas entre muitos átomos, foi prevista e demonstrada em laboratório. Agora Stephen Powell, um cientista do Joint Quantum Institute (JQI) e da Universidade de Maryland, tem aguçado o quadro teórico em que os monopolos podem operar. Os fluxos estáveis ​​de monopolos magnéticos são aparentemente impossíveis, mas as correntes transitórias têm sido demonstradas, e se poderia imaginar a criação de uma corrente alternada, o equivalente magnético da eletricidade, chamada de “magnetricidade”, que pode ser explorada para a concepção de novos tipos de alta densidade de armazenamento de dados. As leis do eletromagnetismo preveem uma simetria muito grande entre forças elétricas e magnéticas. Esta igualdade não se estende, no entanto, as cargas magnéticas. As cargas elétricas isoladas, sob a forma de elétrons, são evidentemente muito comuns. Estas cargas são atraídas ou repelidas mutuamente, com uma força inversamente proporcional ao quadrado da distância entre as cargas. Uma carga positiva e uma carga negativa pode se juntar para formar um dipolo elétrico neutro. A situação no magnetismo parece diferente: dipolos sim, monopolos não. Mas novas idéias e novas experiências mudaram o pensamento convencional. Primeiro, as experiências com os elétrons frios fluindo em uma superfície bidimensional pode, sob a ação de poderosos campos magnéticos, serem estimulados a se moverem em órbitas circulares. Estas órbitas, por sua vez parecem interagir na produção de "quasipartículas" que têm uma carga igual a uma fracção da carga do elétron convencional. Este é o efeito Hall quântico fracionário.

Poderia haver um análogo de dipolos magnéticos? Poderia as circunstâncias permitem a existência dos pólos magnéticos isolados?

As experiências recentes e na Alemanha e na França apontam para esta possibilidade, o denominado "gelo de spin", um material sólido feito de elementos do disprósio (Dy), titânio (Ti), oxigênio (O). O bloco básico de construção destes materiais é um par de agrupamentos tetraédricos, constituído tipicamente de dois átomos de Dy (cada um dos quais atua como um ímã diminuto) apontando para fora de cada tetraedro e dois apontando para dentro. Isto é análogo ao da orientação de átomos de hidrogênio em gelo de água, daí o nome de "gelo de spin".

representação do gelo de spin

© Stephen Powell (representação do gelo de spin)

Normalmente todos os pólos magnéticos devem ser confinados dentro de dois pólos distintos, o dipolo magnético tradicional. No entanto, a uma temperatura suficientemente baixa, cerca de 5 K (kelvin), os átomos tentam se alinharem entre si, mas não podem por causa da geometria inerente do material conduzindo a um estado desordenado com flutuações fortes, sincronizados. Os pólos magnéticos separados podem se formar no meio deste tumulto, ou seja, as "quasipartículas" no gelo de spin com uma rede de "carga" magnética podem existir e se movimentarem. Um gás de cargas elétricas é chamado de "plasma", e a nuvem tênue análoga de cargas magnéticas é chamada de  "plasma monopolo."

Esta nova pesquisa explora o que acontece quando as flutuações são congeladas, por exemplo, em temperaturas ainda mais frias, ou em um elevado campo magnético. Mostra também como os monopolos estão confinados em dipolos magneticamente neutros novamente. Este estudo é o primeiro a prescrever a transição de fase a partir da fase de monopolo (também chamada de fase de Coulomb) para a fase de pólo confinado.

Fonte: Physical Review Letters

segunda-feira, 6 de agosto de 2012

Medindo o formato de um fóton

Pesquisadores conseguiram pela primeira vez medir o complexo "formato" de um fóton, as assim chamadas "partículas" individuais da luz.

ilustração do formato de um fóton

© M. Bellini/NIO (ilustração do formato de um fóton)

O feito teve a participação da brasileira Katiuscia Nadyne Cassemiro, professora da Universidade Federal de Pernambuco.

Em termos estritos, um fóton não é uma partícula e nem exatamente uma onda, ele é uma excitação de um campo eletromagnético.

E, como tal, a medição de sua forma promete ajudar a criar novas formas de criptografar informações.

Os pesquisadores desenvolveram uma técnica para refinar as medições de uma série de fótons individuais que estão em estados idênticos, mas arbitrários.

Isso expande também as possibilidades de usar os complicados "estados internos da luz" para transmitir dados.

Um pulso de luz tem uma grande gama de formatos possíveis, uma vez que sua forma é definida pelas amplitudes e fases de seus componentes de frequência.

Assim, é possível codificar informações no formato do fóton e transmiti-lo de um lugar para outro.

E a liberdade é tão grande que um único fóton pode não apenas representar qualquer letra do alfabeto, como até mesmo conter uma combinação quântica, uma superposição de várias letras.

O experimento agora realizado tem a ver com a leitura desse fóton, quando ele chega ao destino, o que é necessário para retirar dele a informação que ele carrega.

A técnica consiste em misturar o fóton a ser medido com um pulso de laser, permitindo que o fóton e o pulso interfiram mutuamente, reforçando ou cancelando um ao outro, dependendo do seu formato; quanto mais parecidos, maior é a probabilidade de detectar o formato preciso do fóton.

A equipe otimizou o método repetindo a mixagem várias vezes, com fótons idênticos, e redesenhando periodicamente o pulso de laser com base nas medições anteriores.

Finalmente, eles demonstraram que a técnica permite a recuperação de informações intencionalmente codificadas nos complexos estados de um fóton individual.

Fonte: Physical Review Letters

sexta-feira, 3 de agosto de 2012

Novo transístor altera estado da matéria

Logo depois do surgimento do promissor transístor a vácuo, agora acaba de ser inventado um novo tipo de transístor que permite realizar mudanças no estado da matéria usando correntes elétricas.

esquema do transístor de Mott

© RIKEN (esquema do transístor de Mott)

Cientistas do laboratório RIKEN, no Japão, criaram um componente que usa a acumulação eletrostática de cargas sobre a superfície de um material para desencadear uma alteração do seu estado físico.

O material muda completamente, passando de isolante para metálico. E não se trata apenas de uma transição de estados eletrônicos, o material sofre uma mudança em sua estrutura cristalina.

O novo componente já era previsto teoricamente e vinha sendo buscado avidamente pelos cientistas pelo seu potencial de dar maior velocidade e diminuir o consumo de energia dos circuitos eletrônicos.

Ele é chamado de transístor de Mott porque se baseia em um material chamado isolador de Mott, em homenagem ao físico britânico Neville Mott, um tipo de material que pode passar de condutor elétrico a isolante mediante um rearranjo de seus elétrons.

Inúmeros pesquisadores tentaram construir esses transistores inovadores antes, mas nunca ninguém havia conseguido produzir as correntes necessárias para forçar a transição de fase do isolante de Mott.

Masaki Nakano e seus colegas resolveram o problema adicionando uma gota de líquido iônico sobre o isolante de Mott, utilizaram dióxido de vanádio.

Quando uma pequena tensão foi aplicada ao líquido iônico, isto gerou um enorme campo elétrico na superfície do isolante de Mott, induzindo-o a mudar de estado. A transição de fase não aconteceu apenas na superfície do material, mas em todo o seu volume, literalmente transformando todo o bloco de dióxido de vanádio de isolante em metálico e vice-versa.

Embora esse fenômeno de mudança de fase não seja totalmente compreendido, os pesquisadores japoneses descobriram que não se trata apenas de uma mudança de fase eletrônica.

Usando radiação síncrotron, eles verificaram que o dióxido de vanádio sofre uma mudança na sua estrutura cristalina, passando de uma rede monoclínica para uma tetragonal.

O funcionamento de um transistor pode ser entendido como uma chave, na qual a tensão aplicada a um dos seus eletrodos controla o nível de corrente que flui pelos outros dois eletrodos; a aplicação da tensão naquele primeiro eletrodo liga e desliga a corrente que passa pelos outros dois.

A eficiência do transístor é medida pela comparação entre a corrente que ele deixa passar no estado ligado e a corrente que flui indesejadamente no estado desligado.

Um transístor de mudança de fase pode ser muito mais eficiente do que os transístores atuais, nos quais ocorre apenas uma alteração momentânea na resistência elétrica do material semicondutor, na medida que ele será melhor na fase de condução elétrica por ser um metal, e mais radical na fase de retenção da corrente, por ser um isolante.

Essa descoberta, e a imediata exploração do efeito em um transístor, leva o componente eletrônico sexagenário a uma nova fase da vida, com um horizonte de aplicações ainda mais amplo, além do aumento da eficiência nas aplicações já conhecidas.

E, se o efeito pode ser usado para mudar a fase de um material de isolante para metálico, a descoberta abre novas possibilidades de controlar o estado da matéria de outros materiais.

Fonte: Nature

quarta-feira, 25 de julho de 2012

Nova singularidade do espaço-tempo

A teoria da relatividade geral de Einstein estabelece que corpos de grande massa curvam o tecido do espaço-tempo, sendo essa curvatura um efeito que conhecemos como força da gravidade.

supernova SN 1987A

© NASA/Hubble (supernova SN 1987A)

Isso significa que Einstein considerava que o tecido do espaço-tempo é originalmente plano em um dado local.

Os pesquisadores Moritz Reintjes e Zeke Vogler (Universidade de Michigan) e Blake Temple (Universidade da Califórnia, em Davis) propõem que há uma outra forma de criar ondulações no tecido do espaço-tempo.

Eles demonstraram que o espaço-tempo não pode ser localmente plano em um ponto onde duas ondas de choque colidem. Isto representa um novo tipo de singularidade na relatividade geral.

O núcleo de um buraco negro é uma singularidade, onde a curvatura do espaço-tempo atinge valores extremos.

De forma mais geral, uma singularidade é um pedaço do espaço-tempo que não pode parecer plano em nenhum sistema de coordenadas.

Segundo a relatividade geral, a gravidade é tão forte perto de uma singularidade que o espaço-tempo se distorce.

Uma onda de choque pode criar uma descontinuidade, uma mudança abrupta, na pressão e na densidade do tecido do espaço-tempo, criando um ressalto em sua curvatura.

Mas, desde os anos 1960, os físicos calculam que uma única onda de choque não é suficiente para descartar a natureza plana do espaço-tempo em um determinado local.

O que os pesquisadores demonstraram agora é que isso pode acontecer quando duas ondas de choque colidem.

O cruzamento das ondas de choque cria um novo tipo de singularidade, que eles chamaram de singularidade de regularidade.

É possível que ondas de choque que passem pelo interior de estrelas possam criar suas singularidades regulares. Os astrofísicos irão começar a procurar por tais sinais.

Fonte: Proceedings of the Royal Society A

sábado, 21 de julho de 2012

Descoberto novo tipo de ligação química

Foi descoberto um novo tipo de ligação química que é mantida por campos magnéticos extremamente fortes.

campos magnéticos em estrela de nêutrons

© Physics World (campos magnéticos em estrela de nêutrons)

A reação não poderia ocorrer nas condições naturais da Terra, ela apenas ocorre nas proximidades de estrelas de nêutrons ou anãs brancas.

Na Terra, os átomos se ligam por ligações covalentes, ou ligações de hidrogênio, quando eles compartilham elétrons, ou por ligações iônicas, quando a atração eletrostática faz com que íons de cargas opostas se juntem.

No novo tipo de ligação, que Kai Lange e seus colegas da Universidade de Oslo, na Noruega, chamaram de ligação paramagnética, é o magnetismo que mantém os átomos coesos.

Os campos magnéticos presentes naturalmente na Terra mal perturbam as forças eletromagnéticas que ligam os átomos em moléculas.

Mas nas anãs brancas, estrelas no fim de suas vidas, extremamente densas, os campos magnéticos podem atingir 100.000 T (teslas). As estrelas de nêutrons, por sua vez, podem gerar campos magnéticos de 10.000.000 T.

Por comparação, o maior campo magnético gerado na Terra é de 100,75 T.

Na atração magnética extrema, através de simulação em computador, os átomos podem se juntar magneticamente, por meio da interação entre os spins de seus elétrons.

Nessas condições, átomos como o pouco reativo hélio, podem se juntar em pares. O mesmo ocorre com o hidrogênio. Os cientistas não fizeram cálculos para átomos mais complexos.

Aqui na Terra, as ligações químicas normalmente emparelham elétrons com spins opostos. Mas, nessas estrelas supercompactas, o campo magnético intenso interage com o spin dos elétrons, fazendo-os funcionar como pequenos ímãs.

Com isto, os spins dos dois elétrons se alinham com o campo magnético, forçando um deles a se mover para uma posição conhecida como orbital de anti-ligação.

Como elétrons em orbitais de anti-ligação são "proibidos" nos dois tipos de ligação química conhecidos, covalente e iônica, os cientistas afirmam ter descoberto um novo tipo de ligação química, que foi denominada de "ligação paramagnética perpendicular".

Assim, os cálculos demonstram a existência de uma química exótica no espaço, o que pode ajudar a explicar estranhos comportamentos detectados nas condições extremas do Universo.

Fonte: Science

quinta-feira, 5 de julho de 2012

Existência do bóson de Higgs fica mais evidente

Cientistas veem fortes indícios da existência de uma partícula inédita, o bóson de Higgs, única partícula prevista pela teoria vigente da física que ainda não tinha sido detectada em laboratórios, e que vinha sendo perseguida ao longo das últimas décadas.

representação gráfica de colisão de prótons realizada no LHC

© AFP (representação gráfica de colisão de prótons realizada no LHC)

Pela teoria, o bóson de Higgs teria dado origem à massa de todas as outras partículas. Se sua existência for confirmada, portanto, é um passo importante da ciência na compreensão da origem do Universo. Se ele não existisse, a teoria vigente deixaria de fazer sentido, e seria preciso elaborar novos modelos para substituí-la.

Apesar do grande impacto na física teórica, a descoberta ainda não representa um avanço direcionado a nenhum campo específico da tecnologia.

O bóson de Higgs ganhou o apelido de “partícula de Deus” em 1993, depois que o físico Leon Lederman, ganhador do Nobel de 1988, publicou o livro “The God Particle” (literalmente “a partícula de Deus”, em inglês), voltado a explicar toda a teoria em volta do bóson de Higgs para o público leigo. Ainda não há edição desse livro em português.

A nova partícula tem características consistentes com o bóson de Higgs, mas os físicos ainda não afirmam com certeza sua existência. Para isso, eles vão coletar novos dados para observar se a partícula se comporta com as características esperadas do bóson de Higgs.

O anúncio foi feito em Genebra, na Suíça, sede do Centro Europeu de Pesquisas Nucleares (CERN). As conclusões foram baseadas em dados obtidos no Grande Colisor de Hádrons (LHC), acelerador de partículas construído pelo CERN ao longo de 27 quilômetros debaixo da terra, na fronteira entre a França e a Suíça.

Essa máquina, considerada a mais poderosa do mundo, foi construída especificamente para estudos de física de partículas, e a descoberta desta quarta é a mais importante que já foi feita lá até o momento.

A descoberta foi confirmada por especialistas do CMS e do Atlas, dois grupos de pesquisa independentes que fazem uso do LHC. Apesar de usarem o mesmo acelerador de partículas, as duas colaborações científicas trabalham com detectores diferentes e seus resultados são paralelos. Os resultados antecipados ainda serão publicados em revistas científicas.

Os cientistas medem a massa das partículas como se fosse energia. Isso porque toda massa tem uma equivalência em energia. Se você calcula uma, tem o valor das duas. A unidade de medida usada é o gigaelétron-volt, ou "GeV".

O CMS observou um novo bóson com a massa de 125,3 GeV (entre 124,7 e 125,9 GeV) com margem de erro de 0,6 GeV para mais ou para menos com 4,9 sigmas de significância. Este valor representa uma chance menor que um em 1 milhão de que os resultados sejam mera coincidência. Por isso, os cientistas consideram esse número como uma confirmação da descoberta.

Paralelamente, o grupo Atlas afirmou que exclui a inexistência de uma partícula com a massa de 126,5 GeV, com a probabilidade de 5 sigmas. A pequena diferença entre os números dos dois grupos não é considerada tão significativa pelos físicos.

Em 2011, pesquisadores dos dois grupos de pesquisa do CERN já haviam idenficado a presença de um bóson, cuja a massa estaria entre 115 GeV e 130 GeV.

Na última segunda, pesquisadores norte-americanos também tinham encontrado evidência relevante da existência da partícula, em experiências com um acelerador Tevatron.

Um dos motivos pelos quais é tão difícil detectar o bóson de Higgs é a sua instabilidade. Essa partícula dura muito pouco tempo e rapidamente decai em outras.

Tanto o CMS quanto Atlas concentraram seus esforços em duas partículas específicas: os fótons, que é como a luz se manifesta, e os bósons Z, que medeiam a chamada força fraca. O resultado foi suficiente para identificar a existência de uma partícula inédita, mas não para caracterizá-la em detalhes.

Para confirmar se o bóson descoberto é mesmo o bóson de Higgs será necessário estudar a fundo os decaimentos. O Modelo Padrão – conjunto de teorias mais aceito para explicar as interações da natureza e as partículas fundamentais que constituem a matéria – prevê o decaimento do bóson de Higgs em diferentes partículas, cada uma em determinada quantidade.

O próximo passo dos cientistas é testar os vários decaimentos decorrentes dessa partícula. Se os resultados continuarem sendo coerentes com o Modelo Padrão, será confirmado que ela é mesmo o bóson de Higgs.

Caso haja divergências, pode ser que explicações teóricas alternativas sejam adotadas. Já existe uma, chamada de supersimetria, que faz adendos ao Modelo Padrão e prevê a existência de vários bósons de Higgs com pequenas divergências entre si. Será que a existência de dois valores de energias diferentes obtidos pelo CMS e Atlas significaria a existência de dois bósons distintos?

Enquanto estas experiências não mostrarem resultados, é impossível afirmar qual dos modelos se adéqua melhor à natureza.

Fonte: CERN e G1

A imagem da sombra de um átomo

O físico Erik Streed e seus colegas da Universidade de Griffith, na Austrália, usaram uma técnica para tirar uma foto inédita da sombra de um átomo.

 sombra de um átomo de itérbio

© Nature (sombra de um átomo de itérbio)

Eles alcançaram o limite extremo da microscopia, pois não possível ver nada menor do que um átomo usando luz visível. A intenção dos pesquisadores era investigar quantos átomos são necessários para gerar uma sombra e provaram que basta apenas um.

Primeiro, um átomo de itérbio foi confinado no interior de uma câmera de vácuo, devidamente aprisionado por campos magnéticos.

No âmago do experimento está um microscópio de resolução extremamente alta, capaz de tornar a sombra escura o suficiente para que possa ser captada. A seguir o átomo é exposto a uma frequência específica da luz, produzindo a sombra em um anteparo, sombra esta que é então coletada por um sensor digital.

Se a frequência da luz que foi projetada sobre o átomo for alterada em apenas uma parte em um bilhão, a imagem não pode mais ser vista.

O Dr. Erik Streed afirma que, além de permitir um melhor entendimento da física atômica, seu experimento poderá ajudar a explorar a computação quântica.

Os benefícios também são óbvios para a biomicroscopia, sobretudo pelas informações sobre a quantidade de luz que cada átomo deve absorver a fim de criar uma sombra.

"Nós podemos agora prever quanta luz é necessária para observar processos no interior das células, sob condições ótimas de microscopia, sem ultrapassar os limites e matar a célula," disse Streed.

Fonte: Nature

sábado, 30 de junho de 2012

Gerador piroelétrico

Um fenômeno observado pela primeira vez por um filósofo grego, há 2.300 anos, está se tornando a base para um novo dispositivo que pretende nada menos do que aproveitar o calor desperdiçado hoje.

nanofios de óxido de zinco

© Nano Letters (nanofios de óxido de zinco)

Zhong Lin Wang e seus colegas da Universidade de Tecnologia da Geórgia, nos Estados Unidos, indagam que mais de 50% da energia gerada a cada ano vai para o lixo.

Em sua maior parte, ela é desperdiçada no ambiente na forma de calor, por computadores, carros, linhas de transmissão de longa distância, e uma infinidade de outros "vazamentos de energia".

Para tentar capturar esse calor, e reconvertê-lo em eletricidade, eles projetaram um gerador piroelétrico, que tem potencial para ser colocado ao lado dos dispositivos que aquecem quando funcionam, transformando esse calor em eletricidade.

O calor pode ser convertido em eletricidade aproveitando o chamado efeito piroelétrico, descrito pela primeira vez pelo filósofo grego Teofrasto, em 314 AC.

Teofrasto percebeu que a turmalina, quando aquecida, produzia eletricidade estática, atraindo pedaços de palha.

O aquecimento e o resfriamento rearranjam a estrutura molecular de certos materiais, incluindo a turmalina, criando um desequilíbrio de elétrons, gerando uma corrente elétrica.

A conversão termoelétrica geralmente é feita explorando o efeito Seebeck, mas os cientistas argumentam que o efeito piroelétrico é mais eficiente em ambientes onde a temperatura é espacialmente uniforme, sem gradientes térmicos.

Como provavelmente não seria economicamente viável usar a turmalina, os pesquisadores construíram seu gerador piroelétrico usando nanofios de óxido de zinco.

Fabricado com técnicas usadas pela indústria eletrônica, o gerador piroelétrico é pequeno, e produz correntes com potências na faixa dos microwatts.

Para demonstrar que todo o seu entusiasmo com a tecnologia pode ter um apelo prático, os pesquisadores terão antes que demonstrar a possibilidade de fabricar o gerador piroelétrico em uma estrutura flexível, que possa ser colada nos equipamentos que desperdiçam calor.

Por enquanto, o dispositivo pode se enquadrar como um nanogerador, capaz de realizar acúmulo de energia.

Fonte: Nano Letters

terça-feira, 19 de junho de 2012

Nêutrons viajam entre universos paralelos?

Um estranho fenômeno da física pode ser explicado por nêutrons que oscilam entre nosso Universo e outro paralelo.

nêutrons espelho

© Marti/Fotolia (nêutrons espelho)

Experimentos em temperatura extremamente baixa feitos por Anatoly Serebrov no instituto francês Laue-Langevin revelaram que os nêutrons desapareciam por curtos períodos. Agora, uma teoria tenta explicar o fenômeno.

Os físicos teóricos Zurab Berezhiani e Fabrizio Nesti, na Universidade de L'Áquila (Itália) reanalisaram os dados experimentais. Eles mostram que o desaparecimento parece depender da direção e da força do campo magnético aplicado.

Os pesquisadores criaram a hipótese de que os nêutrons oscilam entre os dois universos com seus "nêutrons espelho". Cada uma dessas partículas teria a capacidade de fazer uma transição para esse seu gêmeo invisível, e voltar, oscilando de um mundo para o outro.

E os físicos acreditam que outras partículas, como próton e elétron, também teriam suas irmãs espelho - mas apenas as neutras conseguiriam oscilar entre universos. Estas não seriam afetadas pelas forças forte e fraca do nosso Universo (responsáveis pela união do átomo), mas teriam suas próprias relações de força forte e fraca.

A hipótese de viagem entre universos paralelos coincidiria com a relação entre o desaparecimento temporário e o campo magnético e também com o que já foi descoberto sobre o fenômeno. Os cientistas afirmam que essa oscilação, contudo, dura apenas alguns segundos.

A hipótese afirma ainda que a Terra é cercada por um campo magnético formado quando o planeta captura partículas espelho que flutuam pela galáxia como matéria escura. Ou seja, a hipótese ainda explicaria que a matéria escura seria resultado da oscilação das partículas espelho vindas de galáxia paralela à nossa. Esta interpretação é sujeita à condição de que a Terra possui um campo magnético espelho da ordem de 0,1 Gauss.

Os pesquisadores afirmam que, caso seja sustentada por mais estudos, essa hipótese explicaria várias dúvidas da física, como a própria natureza da matéria escura.

Este resultado, se confirmado por futuros experimentos, terá as mais profundas consequências para a física de partículas, astrofísica e cosmologia.

Fonte: European Physical Journal C

sexta-feira, 8 de junho de 2012

Nova forma de geração de raios X

Cientistas conseguiram pela primeira vez fazer uma espécie de alquimia das luzes.

pulso de raio X com o maior espectro de cores

© U. Colorado (pulso de raio X com o maior espectro de cores)

Tenio Popmintchev, liderando uma equipe dos EUA, Áustria e Espanha, descobriu como converter um raio de luz infravermelha em um feixe altamente coerente de raios X e em uma multiplicidade de outros comprimentos de onda.

Em vez dos enormes aceleradores atuais, o novo equipamento gera raios X de alta pureza em um equipamento portátil, gerando "harmônicos de luz" num cristal e numa câmara de gás sob alta pressão.

A técnica de manipulação das ondas de luz, chamada HHG (high-harmonic generation), alcança uma geração de harmônicos muito maior do que num instrumento musical.

Cada fóton de raio X foi produzido por mais de 5.000 fótons infravermelhos gerando uma enegia de 1,6 keV (kiloelétron-volt), é como tocar uma nota 5.000 oitavas acima!

Os elétrons são seletivamente excitados e relaxados pela luz infravermelha, que emerge do outro lado como um feixe de raios X de altíssima qualidade e precisão. Ou seja, a luz infravermelha faz os átomos emitirem raios X.

A técnica conseguiu produzir pulsos de raios X de 2,5 attossegundos de duração, na fronteira do menor tempo já medido pelo homem.

Isto representa uma nova forma de geração de raios X, uma tecnologia cada vez mais importante para o estudo de materiais em nível atômico, assim como para a análise de fenômenos que ocorrem em escala temporais muito curtas, como as reações químicas.

A técnica é muito versátil: ela pode gerar feixes de luz coerentes e altamente direcionais, similares a um laser, do ultravioleta aos raios X, e toda a faixa de frequência entre os dois. Ou seja, um verdadeiro arco-íris de alta energia.

"Esta é a fonte de luz coerente de maior banda espectral já produzida," afirmou Henry Kapteyn, membro da equipe. "Ela definitivamente abre possibilidades para estudarmos as mais curtas escalas de tempo e espaço relevantes para qualquer processo em nosso mundo natural".

O avanço agora obtido fundamenta-se em desenvolvimentos anteriores do grupo, quando eles desenvolveram um laser na faixa do ultravioleta extremo e um feixe de luz ultravioleta mais preciso do que um laser.

Fonte: Science

quinta-feira, 7 de junho de 2012

Microscópio quântico usa ondas de matéria

Cientistas idealizaram um amplificador de ondas: de luz, som, ou qualquer outra onda; que, ao mesmo tempo, isola essas ondas do seu entorno, literalmente mantendo-as invisíveis.

o chapéu de Schrodinger

© U. Washington (o chapéu de Schrödinger)

Ou seja, você vai ver o resultado ampliado, mas nunca conseguirá ver a onda original.

"Você pode isolar e ampliar o que quer ver, e tornar o resto invisível," explica Gunther Uhlmann, da Universidade de Washington, nos Estados Unidos, ressaltando que o efeito de amplificação é muito forte.

O Dr. Uhlmann faz parte da mesma equipe que afirma ser possível criar uma fenda espacial eletromagnética, que, apesar do nome, terá grande utilidade nas TVs com imagens 3D e na geração de imagens para auxiliar cirurgias.

O que o grupo está propondo agora é "manipular ondas de matéria" - as ondas a que eles se referem são a descrição matemática das partículas na mecânica quântica.

"Vai funcionar para qualquer fenômeno ondulatório descrito ou pelas equações de Helmholtz ou pelas equações de Schrödinger, ou seja, ondas polarizadas no eletromagnetismo, ondas de pressão na acústica ou ondas de matéria na mecânica quântica," garantem Uhlmann e seus colegas.

Essa manipulação das ondas permitirá a construção de um microscópio quântico, capaz de capturar as ondas que descrevem partículas como elétrons e fótons.

Mas um microscópio quântico também será de grande utilidade em coisas muito práticas, como a observação dos processos eletrônicos, fundamentalmente elétrons em movimento, no interior de processadores e de folhas fazendo fotossíntese.

Os autores chamam seu sistema de "chapéu de Schrödinger", uma referência ao famoso "gato de Schrödinger" da mecânica quântica, que pode estar vivo e morto ao mesmo tempo, pelo menos até que você olhe para ele.

A referência se justifica porque, embora amplifique muito a onda e mostre o resultado, a onda original ficará contida no interior de um "escudo de invisibilidade", aparentemente criando algo que parece sair do nada.

"Em certo sentido, você está fazendo mágica, porque parece que uma partícula está sendo criada do nada. É como tirar algo do seu chapéu," justifica Uhlmann.

Essas "partículas emergentes" são na verdade quasipartículas, denominadas quasmons.

As ondas de matéria no interior do chapéu de Schroedinger também podem ser "contraídas", o que equivale a torná-las invisíveis ao mundo exterior, embora Uhlmann acredite que esconder objetos já microscópicos não é algo tão interessante.

Este estudo é parecido com as pesquisas relacionadas com os mantos da invisibilidade e os metamateriais.

A construção do microscópio quântico deverá se basear exatamente nesses materiais artificiais.

Com a publicação da demonstração matemática de que o projeto é viável, o que inclui considerações sobre sua construção usando materiais sólidos, os cientistas esperam agora encontrar parceiros para construir um protótipo.

Fonte: Proceedings of the National Academy of Sciences

quarta-feira, 30 de maio de 2012

O primeiro circuito integrado químico

Cientistas suecos criaram o primeiro circuito integrado químico.

transístor químico

© Journal of the American Chemical Society (transístor químico)

O chip é capaz de fazer cálculos e operações lógicas como um circuito integrado eletrônico comum.

A diferença crucial é que, em vez de eletricidade, o circuito usa compostos químicos circulando através de canais iônicos, similares aos existentes nos seres vivos.

O chip químico é uma decorrência natural de um trabalho divulgado em 2010, quando Klas Tybrandt e seus colegas criaram um transístor iônico, cujo funcionamento depende não de uma corrente de elétrons, mas de um fluxo de íons. Os transistores iônicos transportam tanto íons positivos quanto negativos, assim como biomoléculas.

Nesses últimos dois anos, os pesquisadores trabalharam na combinação dos transistores iônicos negativos e positivos, criando circuitos complementares e portas lógicas similares à organização dos transistores de silício nos chips eletrônicos.

A similaridade com os processadores eletrônicos é praticamente total: o circuito integrado químico baseia sua lógica em transistores de junção iônicos bipolares, que permitem a montagem de inversores e portas lógicas NAND de tipo np (negativo-positivo) e pn (positivo-negativo).

O consumo de energia é baixo e o circuito é totalmente funcional nas condições de altas concentrações salinas típicas dos seres vivos.

Mas a grande vantagem de um processador químico é que ele poderá controlar diretamente as sinalizações celulares, abrindo o caminho para a conexão de circuitos eletrônicos diretamente a seres vivos.

E não apenas a aplicação de fármacos, mas o roteamento e liberação de padrões complexos de moléculas, de fato controlando o comportamento dos "circuitos fisiológicos".

Embora ainda esteja nos estágios iniciais de desenvolvimento, o processador químico terá potencial para mudar totalmente a forma como são controladas as próteses e os implantes médicos, abrindo possibilidades inteiramente novas para os campos da biônica e da biomecatrônica.

Onde hoje existe um circuito eletrônico para disparar uma corrente elétrica e acionar um nervo, por exemplo, poderá haver a saída de um transístor químico, por onde poderão sair substâncias químicas específicas, os íons, de acordo com a função que se deseja ativar nas células vivas.

"Nós poderemos, por exemplo, enviar sinais para as sinapses, em pontos onde o sistema de sinalização não esteja mais funcionando por alguma razão," disse Magnus Berggren, que coordenou o desenvolvimento do chip químico.

Antes disso, nos próprios laboratórios, os cientistas poderão estabelecer condições onde os experimentos terão níveis de controle que não são possíveis hoje, por exemplo, testando a aplicação de um quimioterápico e, simultaneamente, fármacos adicionais que limitem seus efeitos colaterais.

Os testes iniciais do chip químico, a exemplo do que já ocorrera com os transistores iônicos, foram feitos usando o neurotransmissor acetilcolina.

O chip químico é capaz de controlar a liberação da acetilcolina, por sua vez controlando células musculares, que são ativadas quando entram em contato com a substância.

O próximo passo da pesquisa será construir todas as portas lógicas químicas, de forma a montar um processador químico completo.

Como seu funcionamento deverá ser similar ao dos processadores eletrônicos, sua fabricação e adoção deverá ser muito mais rápida do que os chamados "processadores biológicos".

Fonte: Nature Communications

segunda-feira, 28 de maio de 2012

Vácuo quântico gera números aleatórios

Pesquisadores da Universidade Nacional da Austrália desenvolveram o gerador de números aleatórios mais rápido do mundo.

gerador de números aleatórios

© Australian National University (gerador de números aleatórios)

Um artigo descrevendo o conceito havia sido publicado no ano passado pelos professores Ping Koy Lam, Thomas Symul e Syed Assad.

Agora eles construíram o aparelho e colocaram-no online pela internet.

Os cientistas obtiveram os detectores de luz mais sensíveis que puderam obter e os direcionaram para o vácuo, uma região vazia do espaço. Por muito tempo se considerou o vácuo como algo completamente vazio, escuro e silencioso.

Mas a teoria quântica demonstrou que o vácuo nada mais é do que uma extensão do espaço onde partículas virtuais subatômicas aparecem e desaparecem espontaneamente.

Assim, a matéria é resultado das flutuações do vácuo quântico e é possível demonstrar isso, por exemplo, gerando luz a partir do vácuo. A matéria e antimatéria poderão ser criadas desse vácuo quântico.

Como o surgimento e desaparecimento dessas partículas é absolutamente aleatório, os cientistas resolveram aproveitar o fenômeno, denominado de ruído de fundo do vácuo, para gerar números aleatórios.

A geração de números aleatórios tem muitos usos na tecnologia da informação. As previsões climáticas globais, a criptografia, o controle de tráfego aéreo, jogos eletrônicos e vários tipos de modelagem por computador, tudo depende da disponibilidade de números verdadeiramente aleatórios.

A maioria dos geradores de números aleatórios atuais é baseado em software. Embora sejam úteis, quem conhece as condições de entrada para o algoritmo pode reproduzir a "aleatoriedade" do programa, ou seja os números não são verdadeiramente aleatórios.

Para superar este problema, os cientistas têm desenvolvido geradores de números aleatórios que dependem de processos físicos intrinsecamente aleatórios, como o decaimento radioativo ou o comportamento caótico de circuitos.

Uma vantagem adicional da leitura das flutuações do vácuo quântico é que o gerador é muito rápido, podendo produzir bilhões de números aleatórios a cada segundo.

Para demonstrar a viabilidade de sua ideia, os pesquisadores conectaram seu experimento à internet.

"Podemos facilmente tornar essa tecnologia ainda mais rápida, mas atualmente atingimos a capacidade de nossa conexão com a internet," disse Assad.

O próximo passo da pesquisa é miniaturizar o aparato quântico. Os pesquisadores afirmam que deverão deixá-lo não maior do que um dado real, do tipo usado em jogos.

Cada usuário obterá sempre uma sequência nova e única de números que são diferentes daqueles transmitidos a qualquer outro usuário.

O gerador de números aleatórios está online e pode ser acessado no endereço: Quantum Random Numbers Server.

Fonte: Applied Physics Letters

terça-feira, 1 de maio de 2012

Material produz levitação quântica

O pesquisador Norio Inui da Universidade de Hyogo, no Japão, calculou que, sob certas circunstâncias, uma reversão na direção do efeito Casimir será suficiente para levitar uma placa extremamente fina.

efeito Casimir

© Revista Física (efeito Casimir)

A possibilidade prática da chamada levitação quântica, que foi prevista por cientistas brasileiros, foi demonstrada pela primeira vez em 2009.

Em vez de uma medição que demonstra sua possibilidade, ele descreveu um sistema onde a levitação pode ocorrer de forma direta e prática.

A força de Casimir atrai duas placas idênticas, mas alterações na geometria e nas propriedades do material de uma das placas pode inverter o sentido da força.

Em 1948 o físico Holandês Hendrik Casimir dos Laboratórios de Pesquisa Philips previu que duas placas metálicas paralelas descarregadas estão sujeitas a uma força tendente a aproximá-las. Essa força somente é mensurável quando a distância entre as duas placas é extremamente pequena, da ordem de apenas vários diâmetros atômicos. Esta atração é chamada Efeito Casimir. A força de Casemir é descrita por: F = ħ.c.A.π²/240.d4, onde ħ é a constante reduzida de Planck, c é a velocidade da luz, A é a área e d é a distância entre as placas.

Ela está relacionada as Forças de van der Waals. Em 1873, van der Waals elaborou uma equação relacionando a pressão e a temperatura de um gás com o seu volume. Para ele, a pressão deveria ser um pouco menor do que previam as equações até então adotadas, devido às forças de atração entre as moléculas do gás, que faziam com que os choques destas com as paredes dos recipiente em que a substância estava armazenada fossem menos intensos. A equação de van der Waals mostrou-se mais precisa do que as equações anteriores; por isso o novo modelo foi adotado. As forças de van der Waals são muito fracas e atuam apenas quando as moléculas estão muito próximas umas das outras.

O cientista Norio Inui calculou que uma placa feita de um material chamado YIG (yttrium iron garnet), ou ferrita de ítrio, pode fazer levitar uma placa de ouro meio micrômetro acima.

Um elemento importante da descoberta é que a força repulsiva, ou a capacidade da ferrita de ítrio de gerar a levitação, aumenta conforme sua espessura diminui. Isto seria muito conveniente, uma vez que o peso da placa e, consequentemente, a magnitude da força necessária para levitá-la, diminui com a espessura.

A pesquisa possibilitará um aumento da precisão de equipamentos, como giroscópios levitantes, e nas medições de experimentos científicos, incluindo a comunicação do mundo quântico com o mundo clássico.

Fonte: Journal of Applied Physics

quinta-feira, 26 de abril de 2012

Simulador quântico testando novos materiais

Cientistas do Instituto Nacional de Padrões e Tecnologia (NIST) dos Estados Unidos criaram um simulador quântico que pode ajudar a compreender as propriedades de materiais magnéticos.

simulador quântico

© Nature (simulador quântico)

O pesquisador Joseph W. Britton e seus colegas construíram um simulador quântico que consegue acompanhar a interação entre centenas de partículas, representadas por bits quânticos (qubits).

O dispositivo foi testado e mostrou-se capaz de simular processos essenciais na ciência dos materiais, que procura desenvolver novos materiais mais leves, mais fortes e mais duráveis através da manipulação dos componentes em escala molecular.

O simulador consiste de uma minúscula chapa de cristal, com menos de 1 milímetro de diâmetro, contendo centenas de íons de berílio, e flutuando no interior de um dispositivo chamado armadilha de Penning.

A camada mais externa de elétrons de cada íon funciona como um minúsculo ímã quântico, cuja magnetização representa o equivalente de um 0 ou um 1 de um computador clássico, com a diferença de que esses qubits se comportam como partículas quânticas verdadeiras, com todas as suas estranhas e inusitadas interações.

O aumento do número de qubits aumenta a capacidade do simulador quântico exponencialmente. Por exemplo, com um simulador quântico de 350 qubits será possível obter 10100 estados diferentes.

Para isso, pulsos de micro-ondas e raios laser são usados para fazer com que os qubits interajam entre si, de forma controlada e seletiva, imitando o comportamento de materiais de uma forma impossível de fazer em laboratório.

Embora os átomos do simulador sejam muito diferentes dos átomos de cada material estudado, os qubits são controlados de tal forma que o comportamento de ambos seja matematicamente idêntico.

Desta forma, os simuladores quânticos permitem que os cientistas variem parâmetros que não podem ser alterados em sólidos naturais, como o espaçamento ou a geometria da estrutura atômica, assim como os efeitos da inserção de átomos diferentes, os chamados dopantes, nessa estrutura.

Fonte: Nature

quinta-feira, 19 de abril de 2012

Explosões de raios gama liberam menos partículas

As erupções de raios gama são explosões que acontecem em galáxias distantes e liberam enormes quantidades de energia.

ilustração de uma erupção de raios gama

© NASA (ilustração de uma erupção de raios gama)

Até recentemente, eram vistas como o evento de maior energia em todo o Universo, mas um estudo publicado pela revista científica Nature pode mudar esta concepção.

A colaboração científica IceCube da NSF (National Science Foundation) descobriu que o fluxo de partículas, constituído de neutrinos, associado ao surgimento das erupções de raios gama é, pelo menos, 3,7 vezes menor do que se previa.

A descoberta pode ter dois significados. Ou estas erupções não são responsáveis pelos raios cósmicos de maior energia no Universo, ou elas produzem muito menos neutrinos do que a teoria previa.

IceCube Lab

© NSF (IceCube Lab)

O IceCube Neutrino Observatory, instrumento utilizado na pesquisa, é um detector de neutrinos localizado na Antártica. Ele possui mais de 5 mil sensores óticos dentro de uma região de um quilômetro cúbico para medir a direção e a energia de partículas chamadas múons, que se colidem com o gelo. A partir destas medições, os cientistas fazem descobertas sobre a física de partículas.

Fonte: G1 e Nature

sexta-feira, 13 de abril de 2012

Os férmions de Majorana

Depois de 75 anos de buscas, cientistas holandeses podem ter descoberto os férmions de Majorana.

dispositivo para criar os férmions de Majorana

© TU Delft (dispositivo para criar os férmions de Majorana)

O físico italiano Ettore Majorana previu, em 1937, a existência de partículas que são suas próprias antipartículas.

Quando um elétron - de carga negativa - encontra um pósitron - sua antipartícula, com carga positiva - eles se aniquilam mutuamente com a emissão de um flash de raios gama.

Já um férmion Majorana é uma partícula neutra que é a sua própria antipartícula.

Nenhum experimento até hoje, nem mesmo dos grandes aceleradores de partículas, como o LHC, reportaram qualquer avistamento de férmions de Majorana.

Mesmo não sendo partículas ordinárias, que possam existir soltas por aí, os cientistas afirmam que um acelerador de partículas poderia detectar os férmions de Majorana, embora o LHC não tenha a sensibilidade necessária para isso.

Mas muitos físicos já acreditavam que eles poderiam ser encontrados em sistemas de estado sólido.

Nos materiais condutores de eletricidade, existe um análogo da antimatéria: os elétrons (negativos) e as lacunas (positivas), um desaparecendo ao se encontrar com o outro. Ou seja, assim como partículas e antipartículas não podem coexistir, elétrons e lacunas também não.

Os físicos então idealizaram um experimento no qual elétrons e lacunas podem ser preservados sem se fundirem.

Para isso eles combinaram materiais supercondutores com isolantes topológicos, um tipo de material que conduz eletricidade apenas em sua superfície.

Quando são unidos, os dois materiais criam um padrão de campos elétricos em sua interface que pode evitar que os elétrons caiam nas lacunas, eventualmente permitindo a formação dos férmions de Majorana.

E foi isso o que fizeram Vincent Mourik e seus colegas das universidades de Delft e Eindhoven.

O grupo acredita ter localizado os férmions de Majorana dentro dos nanofios de um tipo muito estranho de transístor, construído por eles com supercondutores e isolantes topológicos. O dispositivo é formado por um nanofio de antimoneto de índio ligado a dois eletrodos, um de ouro e outro de nióbio, este supercondutor. Os férmions de Majorana foram criados na porção final do nanofio.

Quando o transístor supercondutor foi colocado sob um campo magnético, os cientistas observaram um pico de sinal de tunelamento, em energia zero. O sinal resistiu a variações do campo magnético e da tensão aplicada ao transístor.

O sinal de pico desapareceu quando foram eliminados o campo magnético, ou quando eles trocaram a porção supercondutora do transístor por um fio normal, itens necessários para a formação dos férmions de Majorana.

Segundo os autores, seus resultados oferecem evidências da existência dos férmions de Majorana em "nanofios supercondutores acoplados".

Férmions de Majorana não são partículas, ou pequenas quantidades de matéria, no sentido que são considerados os elétrons ou os neutrinos: eles são quasepartículas, como os plásmons de superfície - mas que se comportam de forma muito parecida com uma partícula "autêntica", o que permite sua detecção.

A propósito, os físicos continuam tentando confirmar, como alguns teóricos propõem, se um neutrino pode ser realmente sua própria antipartícula.

Além do interesse da física fundamental, os férmions de Majorana têm grande potencial para serem usados para a criação de uma nova plataforma de computação quântica.

Quando dois férmions de Majorana são movimentados um em relação ao outro, cada um deles mantém a memória da sua posição anterior. Isto permitiria a construção de computadores quânticos excepcionalmente estáveis, praticamente imunes à influência externa.

Outros cientistas apontam para a importância dos férmions de Majorana em escala cosmológica: eles acreditam que eles possam ser o constituinte fundamental da matéria escura, uma matéria que é detectada apenas por seus efeitos gravitacionais, mas que ninguém sabe do que se trata.

A observação agora relatada dos férmions de Majorana foi indireta e, portanto, não totalmente conclusiva, embora otimizações no experimento - como a redução da temperatura do semicondutor - possam gerar resultados mais robustos no futuro.

Fonte: Science

sábado, 24 de março de 2012

Nova imagem do núcleo do átomo

Um conceito errôneo é visualizar o átomo como sendo análogo a um sistema planetário, admitindo o núcleo, composto por prótons e nêutrons, como sendo algo estacionário, fisicamente delimitado.

nova imagem do núcleo atômico

© ANL (nova imagem do núcleo atômico)

Enquanto que há muito tempo sabemos que os elétrons são "nuvens de probabilidade" ao redor dos núcleos, devido à sua peculiaridade bipolar, podendo se comportar como partículas ou ondas.

Na década de 1980 descobriu-se que alguns núcleos atômicos de elementos leves, como hélio, lítio e berílio, não têm bordas externas definidas: eles possuem halos, partículas que se destacam além das bordas do núcleo, criando uma nuvem que envolve o núcleo. A imagem abaixo mostra uma ilustração do núcleo de berílio circundado por seu halo. Segundo medições realizadas por uma equipe alemã, o halo se estende a até 7 femtômetros (0,000000000000007 metros) do centro de massa do núcleo, cobrindo uma área três vezes maior do que a parte densa do núcleo.

núcleo de berílio circundado por seu halo

© Dirk Tiedemann/Uni-Mainz (núcleo de berílio rodeado por seu halo)

Agora, depois de realizar as observações mais precisas já feitas até hoje do halo nuclear, cientistas demonstraram que até um quarto dos núcleons (prótons e nêutrons) do núcleo denso de um átomo estão viajando continuamente a uma velocidade de até 25% da velocidade da luz.

"Nós geralmente imaginamos o núcleo como um arranjo fixo de partículas, quando na realidade há um monte de fatores acontecendo no nível subatômico que nós simplesmente não podemos ver com um microscópio," ressalta o físico John Arrington, do Laboratório Nacional Argonne (ANL), nos Estados Unidos.

Ele e seus colegas usaram grandes espectrômetros magnéticos para observar o núcleo de átomos de deutério, hélio, berílio e carbono.

O berílio ao contrário dos outros átomos possui dois aglomerados de núcleons, cada um parecido com um núcleo do átomo de hélio-4. Esses núcleons, por sua vez, estão associados a um nêutron adicional.

Isso desfaz completamente a figura do núcleo como uma esfera fisicamente delimitada, além de mostrar que o halo é mais complexo do que se imaginava.

Por causa dessa configuração complicada, o núcleo do berílio apresenta um número relativamente alto de colisões, apesar de ser um dos núcleos menos densos entre todos os elementos.

Os cientistas afirmam que esse efeito acelerador pode ser resultado de interações entre os quarks que formam os núcleons, sendo que cada próton e cada nêutron consiste de três quarks muito fortemente ligados.

Quando os núcleons se aproximam uns dos outros, as forças que unem os quarks podem ser perturbadas, alterando a estrutura dos prótons e dos nêutrons, possivelmente até mesmo formando partículas compostas pelos quarks de dois núcleos diferentes.

O próximo passo dos pesquisadores ao estudar este fenômeno será obter uma imagem da distribuição dos quarks quando os núcleons se aglutinam.

Fonte: Argonne National Laboratory

sexta-feira, 23 de março de 2012

Mecanismo insensível aos campos magnéticos

Pesquisadores europeus criaram um mecanismo insensível a campos magnéticos, com aplicações potenciais nos setores militar e médico.

invisibilidade magnética

© Alvaro Sanchez (invisibilidade magnética)

Este avanço consiste na criação de campos magnéticos estáticos gerados por um ímã permanente ou de uma bobina atravessada por uma corrente elétrica. Estes campos já são utilizados nas imagens médicas de MRI (ressonância magnética) e em muitos sistemas de segurança usados em aeroportos.

O dispositivo desenvolvido por estes pesquisadores, entre eles Alvaro Sanchez, da Universidade Autônoma de Barcelona, na Espanha, é um cilindro com duas camadas concêntricas: a camada interior, constituída por um material supercondutor, repele os campos magnéticos, enquanto a camada exterior, de material ferromagnético, os atrai.

Colocado em um campo magnético, o cilindro não o perturba, não produz nem "sombra" nem "reflexo". Assim, um objeto colocado em seu interior não será detectado magneticamente ficando, portanto, insensível ao campo magnético, explicou Sanchez, que usa a palavra "invisibilidade" para se referir ao processo.

Como o dispositivo é feito de materiais comercialmente disponíveis e funciona em campos magnéticos relativamente fortes, ele pode, segundo os autores, ser facilmente implementado.

Este sistema pode proteger uma pessoa com marcapasso, sensível às ondas eletromagnéticas, quando precisar passar por um exame de ressonância magnética, por exemplo.

Também pode atuar como um escudo magnético ao redor de um submarino e de alguns equipamentos sensíveis ao campo eletromagnético.

Os trabalhos realizados por estes pesquisadores diferem daqueles feitos nos últimos anos com metamateriais - materiais compósitos artificiais - projetados para não refletir os raios de luz.

A luz flui sobre eles como água sobre a rocha, fazendo com que se torne invisível. Até agora, os metamateriais criados apenas obtinham uma invisibilidade parcial, ressaltam os autores dos trabalhos publicados.

Fonte: Science

quarta-feira, 21 de março de 2012

Descoberta a partícula mais leve

Uma nova partícula nuclear fundamental (do núcleo atômico) foi descoberta por dois pesquisadores da Universidade de Coimbra e do Instituto Superior Técnico (IST).

simulação de uma sopa de quarks e glúons

© BNL/RHIC  (simulação de uma sopa de quarks e glúons)

A E(38), como foi designada, é a partícula subatômica mais leve conhecida e, de acordo com os seus descobridores, ela ajuda a explicar as partículas nucleares enquanto micro-universos. Eef van Beveren, da Universidade de Coimbra, e George Rupp, do IST, já submeteram o artigo científico anunciando a descoberta à revista Physical Review Letters.

A E(38) é um hádron, mas ao contrário dos outros hádrons conhecidos, este não possui quarks (partículas ainda mais pequenas) na sua constituição, mas apenas glúons, as partículas que funcionam como cola para manter juntos os quarks. "No nosso modelo dos micro-universos, esta partícula é a que gera os próprios micro-universos", explicou o pesquisador de Coimbra, que coordenou o estudo, sublinhando que "o sinal da sua presença nos dados experimentais é muito claro".

A descoberta desta nova partícula não constitui propriamente uma surpresa para Eef van Beveren. Já há mais de 30 anos que o pesquisador holandês, ainda durante o doutoramento no seu país, abordou a existência dos quarks, que nunca aparecem isolados, mas confinados num espaço fechado, enquanto parte dos tais micro-universos. "É uma coisa fechada, de onde nada pode entrar ou sair". Mas este modelo está baseado na hipótese de existência de uma partícula fundamental - como a que agora foi descoberta. O físico holandês esperava que ela existisse, mas não havia sinais da sua presença.

Foi por isso que decidiu reanalisar os dados experimentais da física de partículas nos grandes aceleradores do mundo, como o de Stanford, nos Estados Unidos, do Japão e do CERN. Ao mesmo tempo, em colaboração com George Rupp desenvolveu um método matemático de análise e comparação de dados e foi então que viram o sinal de que estavam à espera. A experiência COMPASS (COmmon Muon Proton Apparatus for Structure and Spectroscopy), realizada no CERN, para produzir hádrons.

Nessa análise foram registrados uma quantidade de 46 mil eventos com 13 sigma de significância, que é um indicador de relevância estatística. Isto é mais que suficiente, ou seja, superior a 5 sigma, para declarar-se a existência de uma partícula. A seguir a figura mostra a evidência da partícula num diagrama do número de eventos em relação à massa.

nova partícula

© U. Coimbra (evidência da partícula)

"Há 30 anos previ que a massa desta partícula devia ser ao redor de 30 MeV (Mega-elétronVolts), mas o aperfeiçoamento do método matemático fez subir um pouco este valor, para 38 MeV", explica van Beveren, sublinhando que "com esta massa, ele é o hádron mais leve que existe". O hádron mais leve que até agora se conhecia, chamado píon, é três vezes mais pesado. O próton é 25 vezes mais pesado que a partícula E(38).

A E(38) é como uma bola de sabão ínfima, em que não existem quarks, e a sua película externa é feita de glúons. Que propriedades terá, ainda vai ser estudado, mas van Beveren antecipa que esta poderá ser a longo prazo uma nova fonte de energia nuclear limpa.

Um miligrama desta matéria fornecerá um megawatt durante um ano!

Fonte: Centro de Física Teórica da Universidade de Coimbra

segunda-feira, 19 de março de 2012

Gravidade quântica pode ser testada

Os físicos acreditam que a teoria da gravidade de Einstein e a física quântica vão coalescer em uma teoria única nas chamadas escalas de Planck.

pulso de laser usado para testar a gravitação quântica

© U. Viena (pulso de laser usado para testar a gravitação quântica)

Nessas escalas, de altíssimas energias e dimensões inimaginavelmente pequenas, acredita-se que ocorram fenômenos que não ocorrem em outras escalas.

O problema é que as escalas de Planck estão tão fora da dimensão humana que a maioria dos estudiosos afirma que é virtualmente impossível testar experimentalmente a gravidade quântica, a não ser em eventos cósmicos muito raros e difíceis de observar.

Um fator preponderante é que o comprimento de Planck é cerca de 1,6 x 10-35 metro. Se você der um zoom nessa dimensão, e torná-la do tamanho de 1 metro, então um único átomo terá o tamanho do Universo inteiro.

A energia de Planck, por outro lado, é tão descomunal que faz o acelerador do LHC parecer uma pilha descarregada; um acelerador de partículas capaz de produzir a energia de Planck seria enorme.

Outro fator intrigante é a massa de Planck, que é 2,17 × 10-8 kg, mais ou menos a massa de um grão de poeira, que parece ser grande demais para os fenômenos quânticos.

Fica então, de um lado, a teoria de Einstein especulando sobre dimensões muito grandes e, de outro, a mecânica quântica indagando sobre moléculas, átomos e coisas ainda menores, ambas falando muito bem em suas respectivas áreas, mas inconciliáveis.

Uma equipe internacional de físicos afirma que se pode testar experimentalmente algumas predições da teoria da gravidade quântica observando os efeitos quânticos em um sistema com a massa de Planck.

Na mecânica quântica, é impossível saber, ao mesmo tempo, onde uma partícula está e a que velocidade ela está se movendo.

Apesar disso, é possível fazer duas medições consecutivas: uma medição da posição da partícula, seguida por uma medição do seu momento, ou vice-versa.

Conforme a sequência usada - primeiro a posição e depois a velocidade, ou vice-versa -, serão obtidos resultados experimentais diferentes.

De acordo com várias teorias da gravidade quântica - ou candidatas a teoria da gravidade quântica - essa diferença entre as duas medições se altera dependendo da massa do sistema, uma vez que o comprimento de Planck, uma espécie de quantum do comprimento, coloca um limite à medição de distâncias.

A equipe de físicos agora demonstrou matematicamente que, embora essas diferenças sejam muito pequenas, elas podem ser verificadas usando sistemas quânticos muito maciços, utilizando a gigantesca massa de Planck.

Mas isso não é um problema assim tão grande, uma vez que a própria equipe da Universidade de Viena já conseguiu estabelecer uma interação entre um fóton e um ressonador micromecânico, criando o chamado acoplamento forte, capaz de transferir efeitos quânticos para o mundo macroscópico.

Ou seja, para eles, é possível testar a gravidade quântica em laboratório.

O experimento proposto lembra um pouco uma técnica usada recentemente para produzir luz a partir do vácuo.

A ideia principal é usar um pulso de laser para interagir quatro vezes com um espelho em movimento para avaliar com exatidão a diferença entre as duas medições - medir primeiro a posição e depois medir o momento, em comparação com medir primeiro o momento e depois medir a posição.

Segundo a equipe, atingindo a precisão adequada, é possível mapear o efeito no pulso de laser, lendo os resultados com técnicas de óptica quântica.

"Qualquer desvio do resultado previsto pela mecânica quântica será muito excitante," afirmou Igor Pikovski, da Universidade de Viena, idealizador da técnica, "mas mesmo se não for observado nenhum desvio, os resultados poderão ajudar na busca por possíveis novas teorias."

Fonte: Nature Physics e Inovação Tecnológica