quinta-feira, 7 de maio de 2015

Sinal galáctico na busca da matéria escura

Essa é uma das observações mais disputadas da física. Mas logo poderá haver uma explicação para um misterioso excesso de fótons de alta energia no centro da Via Láctea.

raios γ do Centro Galáctico

© A. Mellinger/T. Linden/NASA (raios γ do Centro Galáctico)

A análise mais recente sugere que o sinal poderia vir de partícula de matéria escura com a massa necessária exata para ser encontrada no maior acelerador de partículas do mundo.
O Grande Colisor de Hádrons (LHC), localizado no laboratório CERN de física de partículas perto de Genebra, na Suíça, deve voltar a colidir prótons neste verão boreal após um hiato de dois anos. Os cientistas pretendem tornar a busca por essa partícula uma das principais metas da segunda ativação do colisor.
Uma detecção positiva esclareceria a fonte dos raios γ (gama) galácticos. Também revelaria a natureza da matéria escura, substância invisível que se acredita compor cerca de 85% da matéria do Universo, seria uma evidência, procurada há muito tempo, da supersimetria, e assim, um forte argumento para se estender o atual modelo padrão da física de partículas.
“Essa poderia ser a explicação mais promissora para o Centro Galáctico já proposta até hoje”, declara Dan Hooper, do Laboratório Nacional do Acelerador Fermi (Fermilab) em Batavia (EUA), mas adiciona que “existem outras que não estão muito atrás”.
Em 2009, Hooper e Lisa Goodenough, então aluna de pós-graduação da New York University, foram os primeiros a identificar o sinal em dados do telescópio espacial de raios gama Fermi, da Nasa. Eles propuseram que a observação era uma assinatura da matéria escura. Duas partículas de matéria escura em colisão aniquilariam uma à outra, assim como ocorre com matéria e antimatéria. A aniquilação geraria uma sucessão de partículas de vida curta que acabariam produzindo raios γ.
Mas a partícula proposta, que foi batizada de hooperon ou gooperon em homenagens aos cientistas, logo encontrou problemas com a versão favorita da supersimetria. Ainda que a extensão supersimétrica mínima do modelo padrão (MSSM) permita partículas de matéria escura com a massa estimada de hooperons, cerca de 25 a 30 gigaeletronvolts (1 GeV é aproximadamente a massa de um próton), vários experimentos já sugeriram que as partículas devem ser mais pesadas que isso. Para acomodar hooperons, a MSSM teria que ser modificada o suficiente para deixar muitos físicos desconfortáveis. “Nós precisaríamos de uma teoria completamente nova”, observa Sascha Caron, físico de partículas da Universidade Radbound Nijmegen, na Holanda, que lidera a equipe responsável pelos cálculos mais recentes.
Céticos sugeriram que o excesso de raios γ observado nos dados do Fermi tinham explicações mais simples, como emissões de estrelas de nêutrons ou resquícios de explosões estelares.
Mas no final de 2014, perceberam que os cálculos para a variação da massa de partículas de matéria escura que seriam compatíveis com as observações do Fermi eram conservadores demais. Novas estimativas do ‘ruído’ de raios γ produzido por fontes conhecidas, fornecidas pela equipe científica do Fermi e outras, permitem partículas muito mais pesadas. “O excesso pode ser explicado com uma partícula de até 200 GeV”, explica Simona Murgia, física da University of California, Irvine, e uma das principais cientistas da equipe do Fermi.
Armados com essa ideia, Caron e seus colaboradores recalcularam as previsões da teoria MSSM e encontraram outra possível explicação para o excesso, um candidato existente à matéria escura chamado de neutralino. O neutralino era pesado o suficiente para não ser excluído por experimentos anteriores, mas leve o suficiente para poder ser produzido na segunda ativação do LHC.
O modelo de Caron também permite uma previsão para a quantidade de matéria escura que deveria ter sido criada no Big Bang, que é compatível com observações da radiação cósmica de fundo, a radiação remanescente do Big Bang, realizadas pela sonda Planck, da ESA. Isso não pode ser uma coincidência, afirma ele. “Eu acho isso incrível”.
A equipe de Caron não é a única reavaliando as observações do Fermi sob a perspectiva das novas estimativas. Cálculos semelhantes, mas menos detalhados, realizados pelo físico Patrick Fox, do Fermilab, e seus colegas em novembro último também revelaram o neutralino como uma possível causa dos raios γ do Fermi. E Katherine Freese, diretora do Nordita, o Instituto Nórdico de Física Teória em Estocolmo, declara que ela e seus colaboradores calcularam que o excesso poderia ser provocado por um tipo de matéria escura que faz parte de uma teoria menos popular da supersimetria.
A resolução desses problemas pode estar logo adiante. Além de ser produzido no LHC, o neutralino também poderia estar ao alcance de experimentos subterrâneos da próxima geração, prontos a detectar partículas de matéria escura que por acaso atravessem a Terra, informa o físico Albert De Roeck. Roeck trabalha no CMS, um dos dois detectores do LHC que caçarão a matéria escura. Se essa partícula realmente for a causa dos raios γ, é possível que os sinais de matéria escura sejam observados muito em breve.

Fonte: Nature

sábado, 2 de maio de 2015

Descoberto monopolo no campo quântico

Pesquisadores da Universidade de Aalto (Finlândia) e Amherst College (EUA) tem observado um monopolo no campo quântico pela primeira vez.

ilustração de um monopolo no campo quântico

© Heikka Valja (ilustração de um monopolo no campo quântico)

Esta descoberta se conecta às características importantes do elusivo monopolo magnético. Os pesquisadores realizaram um experimento em que manipularam um gás de átomos de rubídio preparados em um estado não imantado perto da temperatura do zero absoluto. Sob estas condições extremas foi possível criar um monopolo no campo da mecânica quântica que descreve o gás.
"Neste estado não magnético, foi criada uma estrutura no campo descrevendo o gás, assemelhando-se ao monopolo magnético, conforme descrito nas grandes teorias unificadas da física de partículas. Anteriormente, foi utilizada um gás para detectar um monopolo dentro de um chamado campo magnético sintético, mas não houve a ocorrência de monopolo no campo quântico que descreve o próprio gás. Agora finalmente testemunhamos a existência do monopolo da mecânica quântica!", alega o Dr. Mikko Möttönen da Universidade Aalto.

condensado de Bose-Einstein contendo o monopolo

© U. Aalto (condensado de Bose-Einstein contendo o monopolo)

A imagem acima mostra um condensado de experimentalmente criado de Bose-Einstein contendo um monopolo (à esquerda) e a previsão teórica correspondente (à direita). Área mais clara tem maior densidade de partículas e as diferentes cores indicam o estado de rotação interna dos átomos. O monopolo está localizado no centro do condensado.

No estado não magnético do gás, não há remoinhos quânticos ou monopolos que são criados no campo magnético sintético. Entretanto, a ordem magnética prevalece na amostra no campo da mecânica quântica, e os cientistas foram capazes de manipular isso com ajustes para um campo magnético aplicado externamente.
"O controle desses campos magnéticos deve ser estável a uma pequena fração do tamanho do campo magnético da Terra", acrescenta o Prof. David Hall do Amherst College. "O principal desafio experimental que enfrentamos foi preparar o gás criogênico em condições altamente sensíveis, em que as flutuações do campo devido ao movimento de objetos metálicos ou variações de linha de energia podem propiciar a observação dos monopolos difíceis".
O resultado é um notável avanço na pesquisa na área quântica. É importante compreender a estrutura dos monopolos e outras entidades topológicas, porque elas aparecem nos modelos que descrevem o Universo precoce e afeta as propriedades de muitos materiais diferentes, tais como os metais.
A descoberta de uma partícula de monopolo magnético poderá ocorrer no futuro. Este novo resultado estabelece que a estrutura de um monopolo na mecânica quântica pode ser exibido na natureza e, portanto, suporta ainda a possibilidade de que existem monopolos magnéticos.

Fonte: Science

Polarons viajando em material fotoativo

Pesquisadores do Instituto de Tecnologia de Karlsruhe (KIT) têm revelado um importante passo na conversão de luz em energia armazenável.

migração de polarons em ZnO

© Patrick Rinke/Aalto University (migração de polarons em ZnO)

Cientistas do Instituto Fritz Haber, em Berlim (Alemanha) e da Universidade Aalto em Helsinque (Finlândia) estudaram a formação dos chamados polarons em óxido de zinco (ZnO).

As pseudopartículas viajam através do material fotoativo até que elas são convertidas em energia elétrica ou química numa interface.

Processos de conversão da luz em energia armazenável podem contribuir de forma decisiva para um fornecimento de energia sustentável. Há bilhões de anos, a natureza vem utilizando esses processos para a fotossíntese para formar carbohidratos com a ajuda da luz. Na pesquisa, a fotocatálise que utilza a luz para acelerar processos químicos está ganhando importância. Nos últimos anos, os pesquisadores também realizaram progressos consideráveis ​​em células fotovoltaicas convertem a luz solar incidente diretamente em energia elétrica, com eficiência constantemente melhorada.
No entanto, os processos de energia fotovoltaica subjacentes dificilmente têm sido estudadas em detalhe até aqui. "A conversão de fótons, ou seja, partículas de luz, em energia elétrica tem várias etapas," explica o professor Christof Wöll, chefe do Instituto de Interfaces Funcionais (IFG) do KIT. Primeiro, a luz é absorvida num material fotoativo, onde elétrons individuais são removidos de suas posições na rede atômica e deixando lacunas. Os pares elétron-lacuna são estáveis ​​apenas durante um curto prazo de tempo. Em seguida, eles decaiem sob a emissão de luz ou são separados se movendo no material de forma independente um do outro. O destino desta partícula carregada então depende do material.
Na maioria dos materiais, as lacunas livres não são estáveis, convertendo-se em um polaron, o que pode envolver perda de energia. Um polaron é uma pseudopartícula descrita é composta por uma carga positiva e a sua interação com o seu ambiente. Pesquisadores do KIT sob a direção do Professor Christof Wöll já realizadas experiências usando material de óxido de zinco fotoactivo, a fim de estudar a formação ea migração de polarons. Os pesquisadores do KIT empregaram uma configuração experimental única a nível mundial para a espectroscopia de absorção de reflexão de infravermelha (IRRAS) com uma resolução temporal de 100 milissegundos e o infravermelho medido em monocristais de óxido de zinco, onde observaram bandas de absorção intensivos, ou seja, impressões digitais, de uma pseudopartícula até agora desconhecida. A interpretação dos dados e identificação desta nova pseudopartícula foram grandes desafios para os pesquisadores. Em cooperação com um grupo de trabalho no Instituto Fritz Haber e do Centro de Excelência para Nanociência Computacional (COMP), da Universidade de Aalto, no entanto, eles conseguiram de forma inequívoca atribuição das bandas de absorção denominadas de lacunas de  polarons. "Esta é uma importante descoberta feita em 2015, o Ano Internacional da Luz e tecnologias baseadas na Luz", diz o professor Wöll.

Esta descoberta relevante para a energia fotovoltaica foi publicada na revista Nature Communications.

Fonte: Karlsruhe Institute of Technology

domingo, 29 de março de 2015

Cristais quadrados de gelo

Quando a água está confinada em alta pressão entre folhas de grafeno suas moléculas adotam uma configuração quadrada.

cristais de gelo entre folhas de grafeno

© Universidade de Ulm (cristais de gelo entre folhas de grafeno)

A imagem mostra uma bolsa de gelo entre duas folhas de grafeno visto em um microscópio eletrônico de transmissão. As manchas escuras de alto contraste são átomos de oxigênio que indicam posições de moléculas de água. Os átomos de hidrogênio deu muito pouco contraste fornecendo baixa resolução.

Uma equipe de físicos da Universidade de Ciência e Tecnologia da China, da Universidade de Manchester, Reino Unido, e da Universidade de Ulm, na Alemanha observaram esta configuração quadrada.
Em nosso cotidiano, estamos familiarizados com água em suas formas líquidas mais comum, de gelo e de vapor.

Os pesquisadores também analisaram a água sob condições mais extremas, incluindo com pressões elevadas, onde ela pode existir no estado sólido mesmo à temperatura ambiente.

Os cristais de gelo nas formas tetraédricas lindamente simétricas podem ser vistos em flocos de neve e na superfície de lagos congelados. Essas geometrias podem persistir em situações de pressões muito elevadas, mesmo que a estrutura subjacente sofre mudanças de fase tanto sutis e dramáticas com variação da pressão. Isso certamente se aplica à água sem restrições.

Quando confinado entre outros materiais, no entanto, o comportamento de água é influenciada por interações com superfícies de materiais nucleares.

Em um novo estudo realizado pelo Dr. Gerardo Algara-Siller da Universidade de Ulm, e seus colegas, uma monocamada grafeno foi primeiro depositada sobre uma grelha de microscópio eletrônico de transmissão, e em seguida exposta a uma gota de água e coberta com uma outra camada de grafeno.

Grande parte da água foi espremida para fora do sanduíche de grafeno pela força de van der Waals. O restante foi preso em bolsas com menos de um milionésimo de metro de diâmetro.

"Nós não sabíamos a princípio o que estávamos vendo, e apenas em discussão com os nossos colegas de Manchester foi concebida a ideia de gelo quadrado", disse o Prof. Ute Kaiser, da Universidade de Ulm, um co-autor do estudo.

Este estudo pode melhorar a nossa compreensão do transporte de água através de canais em escala nanométrica em membranas naturais e artificiais.

Os resultados foram publicados na revista Nature.

Fonte: Universitäten Ulm

domingo, 15 de fevereiro de 2015

Descobertas duas novas partículas

Físicos do Large Hadron Collider (LHC) do European Organization for Nuclear Research (CERN) detectaram duas partículas subatômicas nunca vistas antes.

ilustração da partícula Ξb

© APS/Alan Stonebraker (ilustração da partícula Ξb)

As partículas Ξb foram previstas pelo modelo de quarks e estima-se que possuem cerca de seis vezes a massa do próton, sendo que em experiências anteriores não foram detectadas devido à energia insuficiente para produzir essas partículas massivas. As detecções com novas medidas de precisão das massas das partículas Ξb, irão colocar restrições mais rígidas sobre a teoria da física de partículas.

O quark, na física de partículas, é uma partícula elementar e um dos dois elementos básicos que constituem a matéria. Outro é o lépton, como o elétron (e-), o múon e seus neutrinos. Os quarks se combinam para formar partículas compostas chamadas hádrons; os mais estáveis desse tipo são os prótons e os nêutrons, que são os principais componentes dos núcleos atômicos. Devido a um fenômeno conhecido como confinamento, os quarks nunca são diretamente observados ou encontrados isoladamente; eles podem ser encontrados apenas dentro de hádrons e os mésons. Existem seis tipos de quarks: up, down, strange, charm, bottom, e top. Os quarks up e down possuem as menores massas entre todos os quarks. Os quarks mais pesados mudam rapidamente para quarks up down por meio de um processo de decaimento. Devido a isso, quarks up e down são geralmente estáveis e são os mais comuns no Universo, enquanto que os quarks strange, charm, bottom e top só podem ser produzidos em colisões de alta energia, como as que envolvem os raios cósmicos e em aceleradores de partículas.

Os novos quarks descobertos vêm das três famílias: up/down, strange/charm e bottom/top. Em 2007, os físicos observaram a primeira partícula com um quark de cada família: Ξ-b, composto por um bottom, um strange, e um down, dando-lhe uma carga negativa de -1. No entanto, esta é apenas a versão de menor massa dessa combinação de três famílias de quarks. A teoria do modelo de quarks prevê a existência de dois primos de massa mais elevada de Ξ-b, chamados Ξ'-b e Ξ*-b, os quais são caracterizados pela seu spin de 1/2 e 3/2, respectivamente.

Para confirmar a existência dessas partículas Ξ-b de curta duração, o experimento Large Hadron Collider beauty (LHCb) no CERN observou a evidência do decaimento das partículas Ξ-b em dados de colisões próton-próton em energias de 7 e 8 TeV (tera-elétron-volts). Especificamente, eles investigaram o decaimento para um Ξ0b neutro e um píon de carga negativa (π-). Eles observaram assinaturas para as duas partículas com massas de 5.935 e 5.955 MeV (mega-elétron-volts), correspondendo as partículas Ξ'-b e Ξ*-b, respectivamente. Os resultados vieram como uma surpresa, já que muitos modelos previram que a Ξ'-b não era massiva o suficiente para se decompor por este caminho, e uma busca em outro experimento do CERN não tinha encontrado o decaimento equivalente a uma partícula intimamente relacionada à partícula Ξ'0b. Usando as novas medições muito precisas de massa, os teóricos serão capazes de aperfeiçoar os seus modelos, especificamente aqueles que prevêem a massa de outras partículas à base de quarks.

Fonte: Physical Review Letters

Curvatura quântica da luz

A luz viajando perto de um objeto é desviada de seu caminho por causa da força da gravidade.

curvatura quântica da luz

© NASA (curvatura quântica da luz)

Para um objeto de grande massa como o Sol, este desvio é mensurável. As melhores medições até o momento mostram que a atração gravitacional do Sol desvia a luz por 0,00049º de acordo com as previsões da relatividade geral. Agora Niels Bjerrum-Bohr, do Instituto Niels Bohr, na Dinamarca, e colegas calcularam como esse desvio seria alterado quando a gravidade é descrita como um campo quântico.

Os autores descrevem a gravidade usando uma teoria de campo eficaz, uma aproximação de baixa energia de uma possível teoria quântica de campo subjacente da gravidade. Isto permitiu-lhes computar a junção de fótons com efeitos gravitacionais, formulando uma solução analítica para o problema da deflexão da luz por um objeto pesado, como o Sol ou um buraco negro de Schwarzschild. Embora a sua correção quântica predita é demasiado pequena para ser medido experimentalmente, onde o efeito da gravidade é 80 ordens de grandeza maior, eles mostram que os efeitos quânticos causam uma diferença. Esta diferença decorre do fato de que as partículas sem massa como fótons não estão mais restritas a viajar exatamente sobre geodésicas, ou seja, na relatividade geral, as linhas retas modificados pela curvatura do espaço-tempo ao longo de qualquer movimento de partículas em queda livre. Em particular, elas são previstas para dobrar de forma diferente dependendo da sua rotação.

Estas alterações do comportamento previsto pela relatividade geral denota o desvio do princípio da equivalência de Einstein. A estrutura computacional apresentada pelos autores fornece uma maneira simples de avaliar os possíveis efeitos da gravidade quântica em e outros fenômenos cosmológicos.

Fonte: Physical Review Letters

segunda-feira, 12 de janeiro de 2015

Máquinas de spins

Uma equipe coordenada pelo físico Roberto Serra, da Universidade Federal do ABC (UFABC), determinou quanta energia um núcleo atômico pode ganhar ou perder quando é atingido por um pulso de ondas de rádio.

spins

© Cornell University/LASSP (spins)

A maioria dos pesquisadores estava convencida de que o comportamento do núcleo seria imprevisível. Jamais se conheceriam as probabilidades de o núcleo absorver energia das ondas, tornando-se mais quente, ou de esfriar ao transmitir parte de sua energia para elas.

As novas experiências feitas no Centro Brasileiro de Pesquisas Físicas (CBPF), no Rio de Janeiro, demonstram que essa troca de energia obedece a leis da física nunca antes testadas no mundo subatômico. Essas leis podem ajudar a entender melhor reações químicas como a fotossíntese das plantas e a determinar quanta energia os computadores quânticos usarão para funcionar. “Esse é o primeiro experimento de uma nova área da física, a termodinâmica quântica”, diz Serra.

Computadores quânticos prometem usar as leis da mecânica quântica para superar exponencialmente o poder de cálculo dos computadores convencionais. Mas quanta energia esse novo tipo de computação gastará na prática? Quanto calor essas máquinas produzirão ao funcionar? Vão precisar de refrigeração? Responder a essas questões é um dos objetivos da termodinâmica quântica.

Perguntas semelhantes pairavam no ar durante a Revolução Industrial, no século XIX. Qual o mínimo de carvão que os fornos precisariam consumir e a que temperatura as caldeiras deveriam chegar para que as máquinas a vapor alcançassem sua eficiência máxima? Os cientistas da época perceberam que tanto o calor quanto a capacidade das máquinas de trabalharem são formas diferentes de uma mesma quantidade física, a energia, que nunca é criada a partir do nada nem destruída, apenas transformada. Ao investigar a conversão de uma forma de energia em outra, eles descobriram as leis da termodinâmica clássica.

De acordo com essas leis, a energia flui espontaneamente de um volume com temperatura quente para outro mais frio. E uma máquina, mesmo que ideal, só pode converter parte da energia disponível na forma de calor em energia capaz de realizar movimentos mecânicos, isto é, realizar o que se conhece em física como trabalho. “A termodinâmica impõe limites a qualquer tecnologia”, diz Serra.

Os engenheiros vitorianos resolveram seus problemas, mas à custa de um pequeno truque. Seus cálculos só funcionavam quando se considerava que as máquinas estavam isoladas termicamente do resto do mundo, trocando pouco calor com o ambiente. Era preciso ainda que esses processos fossem lentos. Mas essas aproximações não servem na maioria das situações que ocorrem na natureza, em muitas reações químicas, por exemplo. Quando é impossível isolar termicamente um objeto de seu ambiente por muito tempo, a temperatura aumenta e diminui de maneira aparentemente imprevisível, ao contrário do que ocorre nos sistemas isolados, onde tudo tende ao equilíbrio.

Foi apenas em 1997 que o físico-químico Christopher Jarzynski descobriu uma expressão matemática capaz de calcular as variações de energia e de trabalho mecânico que acontecem fora do equilíbrio. “A equação de Jarzynski e outros teoremas de flutuação permitem que os químicos meçam em laboratório a variação de energia de uma molécula antes e depois de uma reação”, explica Serra.

O próprio Jarzynski, em colaboração com uma equipe da Califórnia, confirmou sua equação em 2005, observando o trabalho mecânico de uma molécula de RNA esticada e comprimida como uma mola. Serra nota entretanto que, apesar de microscópico, o movimento da molécula de RNA era grande o suficiente para poder ser calculado usando a famosa fórmula derivada das leis da mecânica de Newton: “Trabalho é igual força vezes deslocamento”.

As equações da termodinâmica, seja dentro ou fora do equilíbrio, foram deduzidas usando a mecânica de Newton. Mas as leis de Newton perdem sentido para vários processos que acontecem nas moléculas e para todos os que ocorrem no interior dos átomos por não ser possível medir forças e deslocamentos com precisão. Nessas escalas valem outras leis, as da mecânica quântica. Serra queria saber se equações como a de Jarzinsky ainda valeriam nesse mundo subatômico. Esse conhecimento ajudaria a entender reações químicas como a fotossíntese. Na fotossíntese, moléculas nas células das folhas funcionam como máquinas quânticas que absorvem energia das partículas de luz e a armazenam na forma de moléculas de açúcar. “O processo é muito eficiente, quase não gera calor”, diz Serra. “Estudos sugerem que é um processo quântico.”

Serra, seus alunos e colegas na UFABC tentavam havia algum tempo estudar a termodinâmica quântica em laboratório, junto com a equipe dos físicos Alexandre Souza, Ruben Auccauise, Roberto Sarthour e Ivan Oliveira, que trabalham com a técnica de ressonância magnética nuclear no CBPF. Os dois grupos mantêm uma parceria que já rendeu várias descobertas.

No centro do equipamento no laboratório do CBPF fica um pequeno tubo de ensaio contendo uma solução puríssima de clorofórmio diluído em água. Cada uma dos cerca de 1 trilhão de moléculas de clorofórmio da solução possui um átomo de carbono-13. O núcleo desse tipo de carbono tem uma propriedade quântica chamada spin, que lembra um pouco a agulha de uma bússola magnética e pode ser representada por uma seta. Sob um forte campo magnético paralelo ao tubo, apontando de baixo para cima, as setas desses spins tendem a se alinhar com o campo, metade delas apontando para baixo e metade para cima. O campo magnético também faz com que os spins apontando para baixo tenham mais energia que os spins voltados para cima.

infográfico da máquina quântica

© UFABC/Roberto Serra (infográfico da máquina quântica)

Os físicos manipulam os spins por meio de campos eletromagnéticos, que oscilam com uma frequência de 125 MHz (megahertz); o equipamento precisa ser isolado para não captar as estações de rádio FM que transmitem nessa frequência. Essas manipulações são feitas por meio de pulsos de onda e não duram mais que alguns microssegundos. O experimento acontece tão rapidamente que é como se, por alguns instantes, cada átomo de carbono no tubo de ensaio estivesse isolado do resto do Universo, submetido a uma temperatura muito próxima do zero absoluto (-273º Celsius). Os pesquisadores conseguem diminuir ou aumentar a diferença de energia entre os spins para baixo e para cima quando reduzem ou aumentam a amplitude de suas ondas de rádio. Quando essa mudança de amplitude é muito rápida, os spins saem de seu isolamento térmico e começam tanto a absorver energia das ondas de rádio – situação em que as ondas realizam trabalho sobre os spins – quanto a transmitir parte de sua energia para as ondas, realizando trabalho sobre elas. “Isso é muito difícil de medir, pois os spins dos carbonos podem trocar energia de quatro maneiras diferentes, todas acontecendo ao mesmo tempo, de maneira probabilística”, explica Serra. “Conheci um grupo na Alemanha que tentou fazer esse mesmo experimento por cinco anos sem sucesso.”

O que impediu o sucesso do grupo alemão, segundo Serra, foi o fato de os físicos tentarem medir diretamente quantas vezes a energia era emitida ou absorvida pelos spins. “O erro acumulado nessas medidas era tão grande que no fim não conseguiam determinar nada”, explica.

A solução chegou mais cedo para Serra, em fevereiro de 2013, quando o físico Mauro Paternostro, da Queen’s University, em Belfast, Irlanda, apresentou um seminário na UFABC sobre propostas inéditas de se observar o trabalho produzido por partículas de luz de maneira indireta. Logo Paternostro, atualmente professor visitante na UFABC, e Laura Mazzola, sua colega em Belfast, começaram a discutir com Serra, Auccauise e o estudante de doutorado na UFABC Tiago Batalhão como adaptar essas técnicas para observar o trabalho dos spins de carbono indiretamente. Com John Good, da Universidade de Oxford, Inglaterra, a equipe descobriu um modo esperto de usar os spins dos núcleos de hidrogênio das moléculas de clorofórmio para espiar o que acontece com os spins dos átomos de carbono enquanto realizam trabalho, sem interferir no processo.

A precisão do experimento foi suficiente para registrar variações de temperatura nos spins de carbono da ordem de bilionésimos de graus e verificar que a equação de Jarzinsky vale na escala subatômica. Outro resultado interessante: os spins de carbono possuem uma tendência maior de extrair energia das ondas de rádio quando a amplitude do pulso de onda é reduzida. A tendência se inverte quando a amplitude de onda é aumentada: os spins tendem a transferir energia para as ondas, ou seja, fazer trabalho sobre as ondas.

“Podemos explorar essa diferença para criar uma máquina térmica quântica”, diz Serra. A máquina funcionaria alternando pulsos de amplitude reduzida e aumentada entre dois estados de equilíbrio térmico, cada um com uma temperatura diferente. A máquina funcionaria de maneira parecida com a de um motor a combustão, que realiza trabalho mecânico com parte da energia química transformada em calor com a explosão do combustível.

A máquina de spins teria pouca utilidade: o trabalho produzido forneceria uma energia ínfima para as ondas de rádio, apenas suficiente para mexer o spin de um núcleo atômico qualquer. Serra está mais interessado em medir quanta energia ela gasta e quanto calor ela dissipa durante seu funcionamento.

“A técnica aplicada nesse experimento tem grande potencial”, diz o físico Lucas Céleri, da Universidade Federal de Goiás, que planeja observar a termodinâmica de uma única partícula de luz em parceria com os físicos Paulo Souto Ribeiro e Stephen Walborn, da Universidade Federal do Rio de Janeiro. “Avanços experimentais são muito raros na termodinâmica quântica, devido à necessidade de controlar o sistema quântico e seu isolamento do ambiente.”

Fonte: FAPESP (Pesquisa)

sábado, 10 de janeiro de 2015

Acelerador de partículas compacto

Um acelerador de partículas pequeno atingiu energias que competem com instalações de grande extensão.

XBD201410-01236.TIF

© Berkeley Lab (acelerador de partículas compacto)

O pesquisador Wim Leemans e seus colegas do Laboratório Nacional Lawrence Berkeley (EUA) aceleraram elétrons no interior de um tubo de plasma com apenas 9 cm de comprimento. A velocidade alcançada pelos elétrons correspondeu a uma energia de 4,25 GeV (gigaelétron-volts).

A aceleração em uma distância tão curta corresponde a um gradiente de energia mil vezes maior do que a obtida nos aceleradores de partículas tradicionais e marca um recorde mundial de energia para aceleradores desse tipo, conhecidos como laser-plasma. Em 2013, outra equipe havia alcançado 2 GeV em um acelerador de 2 cm de comprimento.

Neste ano, o LHC (Large Hadron Collider), que tem 27 km de diâmetro, deverá atingir energias totais de 14 TeV (teraelétron-volts). Mas mesmo instalações de tamanho padrão exigem túneis com centenas de metros de comprimento para chegar aos gigaelétron-volts (GeV).

simulação da evolução do plasma

© Berkeley Lab (simulação da evolução do plasma)

A imagem acima mostra uma simulação computadorizada da evolução do plasma no interior do pequeno acelerador.

Aceleradores de partículas tradicionais, como o LHC, aceleram as partículas modulando campos elétricos dentro de conduítes metálicos. É uma técnica que tem um limite de cerca de 100 MeV/m (megaelétron-volts por metro), porque além disso o próprio metal do conduíte é destruído.

Os aceleradores laser-plasma adotam uma abordagem completamente diferente. No caso deste experimento, um pulso de luz laser é injetado em um tubo cheio de plasma por uma abertura de apenas 500 micrômetros. O laser cria um canal através do plasma, assim como ondas que capturam elétrons livres e os aceleram.

A equipe acredita poder alcançar os 10 GeV com este pequeno acelerador de elétrons. Para isso, segundo Leemans, eles precisarão controlar com mais precisão a densidade do canal de plasma através do qual o laser flui. Em essência, eles precisarão criar um túnel para o pulso de luz que tenha o formato preciso para lidar com os elétrons mais energéticos.

O acelerador de partículas de diminuta dimensão depende de um poderoso laser para gerar os pulsos de alta potência que devem ser injetados no plasma. Neste experimento foi usado um dos lasers mais poderosos do mundo, o BELLA (Berkeley Lab Laser Accelerator), capaz de atingir energias na classe dos petawatts (quatrilhões de watts).

Os resultados aparecem no periódico Physical Review Letters.

Fonte: Lawrence Berkeley National Laboratory

sábado, 1 de novembro de 2014

Mundo quântico surge de mundos clássicos?

Uma nova teoria sugere que o comportamento bizarro do mundo quântico, com objetos existindo em dois locais simultaneamente e a luz se comportando tanto como ondas quanto como partículas, poderia resultar de interações entre muitos mundos “paralelos”.

universos paralelos

© Revista Planeta (universos paralelos)

“Essa é uma mudança fundamental em relação a interpretações quânticas anteriores”, declara Howard Wiseman, teórico quântico da Griffith University em Brisbane, na Austrália.
Teóricos já tentaram explicar o comportamento quântico por meio de vários modelos matemáticos. Uma das interpretações mais antigas visualiza o mundo surgindo a partir de existência de muitos mundos quânticos simultâneos. Mas essa abordagem de “muitos mundos”, defendida pelo teórico Hugh Everett III nos anos 50, se baseia em mundos surgindo de maneira independente uns dos outros, sem qualquer interação entre si.
Em contraste, a equipe de Wiseman visualiza muitos mundos se chocando uns com os outros, chamando a abordagem de “muitos mundos em interação”. Quando isolado, cada mundo é governado pela física newtoniana clássica. Juntos, porém, o movimento de interação desses mundos dá origem a fenômenos que físicos normalmente relacionam ao mundo quântico.
Os autores tentam resolver a matemática de como essa interação poderia produzir fenômenos quânticos. Um exemplo bem conhecido do comportamento quântico é partículas que conseguem tunelar através de uma barreira energética que, em um mundo clássico, não conseguiriam atravessar sozinhas. Wiseman aponta que, nesse cenário, conforme dois mundos clássicos se aproximam de uma barreira energética pelos dois lados, um deles aumenta sua velocidade enquanto o outro se choca com a barreira e recua. Dessa forma, o primeiro mundo aparecerá do outro lado de uma barreira aparentemente intransponível, assim como partículas fazem durante o tunelamento quântico.  
Os físicos descrevem vários outros exemplos de fenômenos quânticos que acreditam poder ser explicados por muitos mundos em interação. Eles calculam, por exemplo, como 41 mundos em interação poderiam dar origem à interferência quântica vista no famoso experimento da dupla fenda, que demonstrou que a luz pode se comportar tanto como onda, quanto como partícula.
Mas muito trabalho ainda é necessário. “De forma alguma respondemos todas as perguntas suscitadas por essa mudança”, alerta Wiseman. Dentre outra coisas, ele e seus colaboradores ainda precisam superar desafios como o de explicar como sua teoria de muitos mundos em interação poderia resolver o emaranhamento quântico, um fenômeno em que partículas separadas por grandes distâncias ainda ficam ligadas em termos de suas propriedades.
Wiseman espera poder recrutar outros pesquisadores para ajudar a enfrentar outras perguntas, como os tipos de forças necessárias para que mundos interajam entre si, e se esses mundos precisam de condições iniciais especiais para interagirem de qualquer forma. “O que me motiva é a busca por uma teoria atraente da realidade que reproduza fenômenos quânticos de maneira natural”, conta ele.
Charles Sebens, filósofo da física da University of Michigan, em Ann Arbor, declara estar empolgado com a nova abordagem. Ele desenvolveu ideias semelhantes de maneira independente, que batizou com o nome paradoxal de “Mecânica Quântica Newtoniana”. Essencialmente, ele usa uma abordagem diferente daquela aplicada pelo grupo de Wiseman, ainda que a ideia geral seja a mesma. “Eles produzem análises muito boas de fenômenos particulares, como níveis de energia fundamental e tunelamento quântico; eu discuto probabilidade e simetria com mais profundidade”, explica Sebens. “Acredito que eles fazem um ótimo trabalho apresentando essa empolgante ideia nova”. Sebens escreveu um artigo que será publicado no periódico Philosophy of Science descrevendo sua abordagem.
O próximo passo da equipe será encontrar maneiras de testar seus dados. Wiseman aponta que, se a abordagem de muitos mundos em interação for verdadeira, ela provavelmente fará previsões levemente diferentes da teoria quântica. “Nós ainda não descobrimos como seriam esses desvios, mas eu acho que seriam muito diferentes do tipo de desvios que as pessoas estão procurando atualmente”.

Fonte: Physical Review X

quarta-feira, 15 de outubro de 2014

Partícula de Majorana em ferro supercondutor

Desde a década de 30, cientistas procuram partículas que sejam ao mesmo tempo matéria e antimatéria.

microscópio de tunelamento por varredura

© Princeton University (microscópio de tunelamento por varredura)

Físicos usaram um microscópio de tunelamento por varredura para produzir imagens de uma fina cadeia de átomos de ferro disposta sobre a superfície de um supercondutor de chumbo (barra amarela). As cores da imagem representam a probabilidade quântica de qualquer local conter uma partícula de Majorana, que é tanto matéria quanto antimatéria. A porção ampliada mostra que a probabilidade de encontrar uma partícula de Majorana aumenta muito nas extremidades do fio, como previsto em teoria.

Agora foram encontradas fortes evidências de uma entidade desse tipo dentro de um material supercondutor. A descoberta poderia representar a primeira “partícula de Majorana”, e poderia ajudar pesquisadores a codificar informações para computadores quânticos. 
Acredita-se que todas as partículas de matéria tenham uma contraparte de antimatéria com massa igual, mas carga diferente. Quando a matéria encontra seu equivalente de antimatéria, as duas se aniquilam.
De acordo com uma previsão realizada em 1937 pelo físico italiano Ettore Majorana, porém, algumas partículas podem ser suas próprias parceiras de antimatéria. Pela primeira vez pesquisadores declararam ter produzido imagens de uma dessas partículas de Majorana.
A nova partícula de Majorana apareceu em supercondutor, material em que o livre movimento de elétrons permite que a eletricidade flua sem resistência.
A equipe de pesquisa, conduzida por Ali Yazdani da Princeton University, posicionou uma longa cadeia de átomos de ferro, magnetizável, sobre a superfície de um supercondutor feito de chumbo.
O magnetismo normalmente prejudica supercondutores, que dependem da ausência de campos magnéticos para que seus elétrons fluam livremente. Nesse caso, porém, o campo magnético se transformou em um tipo especial de supercondutor, em que elétrons próximos uns dos outros coordenavam seus spins para satisfazer simultaneamente as exigências de magnetismo e supercondutividade.
Cada um desses pares pode ser entendido como um elétron e um antielétron, com carga negativa e positiva, respectivamente. Mas esse arranjo deixa um elétron em cada ponta da cadeia sem par, fazendo com que assumam as propriedades tanto de elétrons quanto de antielétrons, em outras palavras, de partículas de Majorana.  
Assim como partículas no vácuo, sem contato com outros tipos de matéria, essas entidades são chamadas de “partículas emergentes”. Elas emergem das propriedades coletivas da matéria adjacente e não poderiam existir fora do supercondutor.
O novo estudo mostra uma assinatura convincente de partículas de Majorana, declara Leo Kouwenhoven da Universidade de Tecnologia Delft, na Holanda, que não se envolveu na pesquisa mas que encontrou sinais de partículas de Majorana em um arranjo supercondutor diferente. “Mas para realmente falarmos sobre provas completas e evidências sem ambiguidade, precisaríamos de um teste”.
Esse teste deve mostrar que as partículas não obedecem às leis normais das duas classes de partículas conhecidas na natureza, férmions (prótons, elétrons e a maioria das partículas com que estamos acostumados) e bósons (fótons e outras partículas que carregam forças, incluindo o bóson de Higgs). “A melhor coisa das Majoranas é que elas podem ser uma nova classe de partícula”, adiciona Kouwenhoven. “Se for encontrada uma nova classe de partículas, adiciona-se um novo capítulo à física”.
O físico Jason Alicea do Instituto de Tecnologia da Califórnia, que também não participou da pesquisa, declara que o estudo oferece “evidências convincentes” de partículas de Majorana, mas que “nós deveríamos manter explicações alternativas em mente, mesmo se não houverem candidatos imediatamente óbvios”.
Ele elogiou a configuração experimental por sua aparente capacidade de produzir as elusivas partículas de Majorana com facilidade. “Uma das maiores virtudes de sua plataforma em relação a trabalhos anteriores é permitir que pesquisadores apliquem um novo tipo de microscópio para analisar a anatomia detalhada da física”.
A descoberta poderia ter implicações para a procura de partículas de Majorana livres fora de materiais supercondutores. Muitos físicos suspeitam que neutrinos, partículas extremamente leves com a estranha capacidade de alterar suas identidades, ou “sabores”, sejam partículas de Majorana, e experimentos estão sendo realizados para investigar essa hipótese.
Yazdani aponta que, agora que sabemos que partículas de Majorana podem existir dentro de supercondutores, pode não ser surpreendente encontrá-las na natureza. “Uma vez que o conceito esteja correto, é muito provável que ele apareça em outra camada da física. Isso é empolgante”.
A descoberta também poderia ser útil para construir computadores quânticos que façam uso das leis da mecânica quântica para realizar cálculos muitas vezes mais rapidamente que computadores convencionais.
Um dos principais problemas na construção de um computador quântico é a suscetibilidade de propriedades quânticas, como o emaranhamento (uma conexão tal entre duas partículas, que agir sobre uma delas afeta a outra), a colapsar devido à interferência externa.
Uma cadeia de partículas com Majoranas em cada extremidade seria quase imune a esse risco, porque seria necessário danificar as duas extremidades simultaneamente para destruir quaisquer informações codificadas nela. “Poderíamos construir um bit quântico com base nessas partículas de Majorana”, declara Yazdani. “A ideia é que esse bit seja muito mais robusto para o ambiente que os tipos de bits que já foram tentados até agora”.

A descoberta foi relatada na revista Science.

Fonte: Scientific American

terça-feira, 7 de outubro de 2014

LED para iluminação conduz ao Prêmio Nobel

A Academia Real de Ciências da Suécia concedeu hoje o Prêmio Nobel de Física a Isamu Akasaki, Hiroshi Amano e Shuji Nakamura pela invenção de diodos de luz azul.

Alfred Nobel

© RSAS (efeito de LED simbolizando o Prêmio Nobel)

Os diodos de luz azul proporcionaram uma fonte econômica de luz branca. Além do amplo reconhecimento de seus trabalhos, eles receberão 8 milhões de coroas suecas (US$ 1,1 milhão) para dividir.

Isamu Akasaki nasceu em 1929 em Chiran no Japão. Fez doutorado na Universidade de Nagoia, onde hoje é professor. Hiroshi Amano nasceu em 1960 em Hamamatsu também no Japão, e é professor na mesma universidade. Shuji Nakamura nasceu em 1954 em Ikata, no Japão, mas tem cidadania americana. Com doutorado na Universidade de Tokushima, ele atualmente é professor na Universidade da Califórnia em Santa Bárbara, nos EUA. A imagem abaixo mostra os laureados do Prêmio Nobel de Física de 2014; da esquerda para a direita: Akasaki, de 85 anos, Amano, de 54, e Nakamura, de 60.

laureados do Prêmio Nobel de Física de 2014

© AP (laureados do Prêmio Nobel de Física de 2014)

Por muitos anos, a indústria teve à sua disposição LEDs de cor vermelha e verde. No entanto, para obter luz LED branca, era necessário ter a componente azul.

Nos anos 1990, os cientistas premiados conseguiram produzir essa luz, possibilitando o uso de LEDs para iluminação, com gasto muito menor de energia que a usada pelas lâmpadas incandescentes, com consumo pelo menos 90% menor. O consumo de materiais também é diminuída com LEDs que duram até 100.000 horas, em comparação com 1.000 horas para lâmpadas incandescentes e 10.000 horas para lâmpadas fluorescentes.

A iluminação com LEDs é muito mais eficiente que a de lâmpadas tradicionais. Considerando que quase um quarto da energia elétrica usada no mundo é consumida para iluminar ambientes, sua invenção representa uma considerável economia de recursos naturais, também porque as lâmpadas LED usam menos material e são mais duráveis.

Outra vantagem dessa tecnologia é que seu baixo consumo a torna interessante para uso em lugares onde não há acesso à rede elétrica, como regiões muito isoladas ou muito pobres.

Os laureados desafiaram verdades estabelecidas, trabalharam duro e assumiram riscos consideráveis. Construíram eles mesmos seus equipamentos, e levaram a cabo milhares de experimentos. Na maioria das vezes, eles falharam, mas não se desesperaram, foi arte de laboratório em seu nível mais alto.

Especificamente, o mérito dos pesquisadores foi insistir num determinado material para fazer a luz azul brilhar no LED. Eles elegeram o nitreto de gálio e se esforçaram para criar cristais de qualidade para seu uso em lâmpadas, apesar de muitos outros pesquisadores terem desistido por dificuldades técnicas. Sua decisão foi acertada: entre a década de 1980 e 1990, os vencedores do Nobel publicaram uma série de trabalhos que aperfeiçoaram os processos até a obtenção de um LED azul suficientemente funcional.

As lâmpadas de LED branco emitem uma luz branca brilhante, são duradouras e eficientes em termos de energia. Elas são constantemente aperfeiçoadas, ficando cada vez mais eficientes, com maior fluxo luminoso (medido em lúmen) por unidade de potência elétrica de entrada (medido em watts). Um lúmen é o fluxo luminoso dentro de um cone de 1 esferorradiano, emitido por um ponto luminoso em todas as direções com intensidade de 1 candela. O registro mais recente é pouco mais de 300 lm/W, que pode ser comparado a 16 para lâmpadas comuns e perto de 70 por lâmpadas fluorescentes.

O objetivo principal dos pesquisadores dessa área agora é aumentar a potência dos LEDs, para que menos unidades sejam necessárias para obter um grande poder de iluminação.

A lâmpada LED é uma grande promessa para o aumento da qualidade de vida de mais de 1,5 bilhões de pessoas ao redor do mundo que não têm acesso às redes de eletricidade, devido ao baixo consumo de energia que pode ser alimentado por energia solar barata local.

A invenção do LED azul possui apenas vinte anos de existência, mas já contribuiu para criar luz branca de uma maneira totalmente nova para o benefício de todos nós.

As lâmpadas incandescentes iluminou o século 20; o século 21 será iluminado por lâmpadas de LED!

Fonte: The Royal Swedish Academy of Sciences

segunda-feira, 1 de setembro de 2014

Estranhos neutrinos solares detectados pela primeira vez

Nas profundezas do Sol, pares de prótons se fundem para formar átomos mais pesados, liberando misteriosas partículas chamadas de neutrinos no processo.

detector Borexino

© Colaboração Borexino (detector Borexino)

Acredita-se que essas reações sejam o primeiro passo na cadeia responsável por 99% da energia que o Sol irradia, mas cientistas nunca haviam encontrados provas até agora. Pela primeira vez, físicos capturaram os elusivos neutrinos produzidos pelas reações básicas de fusão de prótons do Sol.
A Terra deveria estar repleta desses neutrinos, cálculos sugerem que aproximadamente 420 bilhões deles atinjam cada polegada quadrada da superfície de nosso planeta por segundo, mas eles são incrivelmente difíceis de encontrar.
Os neutrinos quase nunca interagem com partículas regulares e normalmente passam direto pelos espaços vazios entre os átomos de nossos corpos e de toda matéria convencional. Mas ocasionalmente eles colidem com um átomo, que solta um elétron, criando um rápido flash de luz visível apenas a detectores extremamente sensíveis. Foi assim que o experimento Borexino do Laboratório Nacional Gran Sasso, na Itália, os encontrou.
A detecção dos chamados “neutrinos pp”, os neutrinos criados pela fusão de dois prótons solares, era uma tarefa quase impossível. “A existência desses neutrinos não era questionada. O que queríamos saber era se algum grupo conseguiria construir um detector tão incrivelmente cristalino que permitisse a visualização desses neutrinos de baixa energia em tempo real, evento por evento”, explica Wick Haxton, físico da University of California, Berkeley, que não se envolveu no experimento. “O Borexino conseguiu fazer isso depois de uma longa campanha para isolar e compreender eventos de fundo”.  
O Borexino usa um tanque cheio de cintilador líquido, um material projetado para emitir luz quando recebe energia, contido em uma grande esfera cercada por mil toneladas de água, protegida por camadas e mais camadas de cobertura e enterrada 1,4 quilômetros abaixo do solo.
Essas defesas foram projetadas para impedir a passagem de tudo, menos neutrinos, assim excluindo todos outros tipos de radiação que pudessem imitar o sinal. “Infelizmente isso não é o bastante para neutrinos pp”, observa Andrea Pocar da University of Massachusetts Amherst que também é membro do Borexino e principal autor de um artigo relatando os resultados.

Parte da contaminação de fundo, no entanto, não pode ser bloqueada porque tem origem no próprio experimento. “O maior ruído vem do carbono 14 do cintilador”, explica Pocar.
O carbono 14 é um isótopo radioativo comum na Terra. Seu decaimento previsível permite que arqueólogos datem espécimes ancestrais. Quando decai, porém, o carbono 14 libera um elétron e emite luz muito semelhante à de neutrino pp. Os físicos tiveram que observar uma estreita faixa de energia em que podem distinguir neutrinos pp de decaimentos do carbono 14.
Mesmo assim, de vez em quando átomos de carbono 14 no cintilador decaem simultaneamente e a energia que eles liberam imita exatamente o brilho do neutrino pp. “Tivemos que compreender esses eventos com muita precisão para subtraí-los”, explica Pocar.
A equipe inventou uma nova maneira de contar os eventos, e coletou dados durante vários anos antes de ter certeza que haviam isolado um sinal verdadeiro. “Essa é uma medida muito difícil de realizar”, elogia Mark Chen da Queen’s University em Ontario, no Canadá, que não se envolveu no projeto. “O esforço que o Borexino fez para purificar o cintilador líquido em seu detector valeu a pena”.
A descoberta de neutrinos pp solares é uma confirmação que tranquiliza físicos em relação aos principais modelos teóricos que descrevem o Sol. Experimentos anteriores encontraram neutrinos solares de alta energia criados por estágios mais avançados do processo de fusão envolvendo o decaimento de átomos de boro. Mas os neutrinos pp de baixa energia foram mais difíceis de encontrar; sua detecção completa a ideia sobre a cadeia de fusão do Sol, além de acelerar os planos para a próxima geração de experimentos terrestres com neutrinos.

Durante as observações, foi medido um fluxo de neutrinos de 6,6 x 1010 por cm² por segundo. Isto significa que o Sol tem uma potência de 3,98 x 1026 W (Watts), um valor muito semelhante ao obtido pela medição da energia da radiação solar que ilumina e aquece a Terra, que é de 3,84 x 1026 W.
Uma estranha peculiaridade dessas partículas elementares é que elas existem em três sabores, chamados de elétron, múon e tau, e têm a bizarra capacidade de trocar de sabor ou oscilar. Devido às complexas particularidades nas reações de fusão de prótons, todos os neutrinos do Sol nascem como neutrinos do elétron. No momento em que atingem a Terra, porém, parte deles já se transformou em neutrinos múon e tau.
Cada sabor de neutrino tem uma massa levemente diferente, ainda que físicos não saibam exatamente quais são essas massas. Determinar as massas e como elas ficam ordenadas entre os três sabores é um dos objetivos mais importantes dos experimentos com neutrinos da atualidade. A diferença de massa entre sabores é o principal fator que afeta a oscilação dos neutrinos.
Se neutrinos estão viajando pela matéria, suas interações com ela também alteram suas taxas de oscilação. Tudo indica que as oscilações de neutrinos de  mais alta energia sofrem interferência da matéria, o que propicia maior chance de oscilação, e portanto menos deles sobreviverão como neutrinos do elétron no momento em que chegam à Terra.
O Observatório Sudbury de Neutrinos, em Ontário, e o experimento japonês Super-Kamiokande mediram esse fenômeno décadas atrás, quando detectaram os neutrinos solares de energia mais alta advindos do decaimento do boro. Agora as descobertas do Borexino confirmam o efeito: mais neutrinos de baixa energia vistos pelo Borexino permaneceram com o sabor elétron que os neutrinos de energia mais altas medidos pelos experimentos anteriores. “Isso é importante porque efeitos sobre a matéria só foram vistos no Sol até agora, mas queremos usar esse efeito na Terra em futuros ‘experimentos de linha longa com neutrinos’ para determinar completamente o padrão de massas de neutrino”, declara Haxton.
Esses experimentos, como o Long-Baseline Neutrino Experiment (LBNE) do Fermilab que deve começar em 2022, investigarão como ocorre a oscilação de neutrinos viajando pela matéria. Em vez de usar neutrinos solares, esses projetos criarão poderosos feixes de neutrinos em aceleradores de partículas e refinarão suas rotas para realizar medidas precisas.
O experimento do Fermilab gerará um fluxo de neutrinos de seu laboratório base, perto de Chicago, até a Instalação de Pesquisa Subterrânea de Sanford na Dakota do Sul. Enquanto os neutrinos atravessam cerca de 1.285 quilômetros de manto terrestre em sua jornada (a chamada “linha longa”), muitos oscilarão. Ao estudar como a matéria do manto intrage com os diferentes sabores para afetar suas taxas de oscilação, os pesquisadores esperam revelar quais sabores de neutrinos são mais leves, e quais são mais pesados.
Resolver o mistério da massa dos neutrinos, por sua vez, poderia apontar para uma teoria da física de partículas mais profunda que o Modelo Padrão atual, que não leva em conta as massas dos neutrinos. A última façanha do Borexino (medir neutrinos com precisão) sugere que os experimentos finalmente estão se tornando poderosos o suficiente para extrair esses segredos das elusivas partículas.

Um artigo divulgando os resultados foram publicados na Nature.

Fonte: Scientific American

terça-feira, 12 de agosto de 2014

Assistindo a morte do gato de Schrödinger

Um dos famosos exemplos da estranheza da mecânica quântica é o paradoxo do gato de Schrödinger.

o gato de Schrödinger

© Revista Física (o gato de Schrödinger)

O gato de Schrödinger é um experimento mental, em que um gato é posto em uma caixa onde um frasco de veneno pode ser aberto pelo estado de uma partícula quântica. Se você colocar um gato dentro de uma caixa opaca e fazer a sua vida dependente de um evento aleatório, quando é que o gato morrerá? Quando eventos ocorrerem ao acaso, ou quando você abrir a caixa?

Embora o senso comum sugere que na mecânica quântica a interpretação de "Copenhagen" enunciada pelo físico dinamarquês Niels Bohr em 1920, diz que é o último. Alguém tem que observar o resultado antes que se torne definitiva. Até então, paradoxalmente, o gato está vivo e morto ao mesmo tempo.

Uma equipe de físicos das universidades de Rochester, Berkeley e Washington, pela primeira vez mostrou que, de fato, é possível acompanhar através de todo o processo, se o gato vive ou morre no final.

O paradoxo do gato de Schrödinger é uma questão crítica em computadores quânticos, onde a entrada é um emaranhado de estados, como a vida e morta embaralhada do gato, ainda a resposta para saber se o animal está vivo ou morto tem de ser definida.

"Para Bohr e outros, o processo foi instantâneo, quando você abriu a caixa, o sistema entrou em colapso emaranhado em um estado clássico definido. Este postulado agitado debate na mecânica quântica", disse Irfan Siddiqi, professor associado de física da Universidade da Califórnia, em Berkeley. "Mas o rastreamento em tempo real de um sistema quântico mostra que é um processo contínuo, e que podemos extrair constantemente informações do sistema, uma vez que vai do quântico ao clássico. Este nível de detalhe nunca foi considerado acessível pelos fundadores da teoria quântica".

Para os computadores quânticos, isso permitiria que a correção de erro fosse contínua. O mundo real, onde a luz e o calor hà vibração, um sistema quântico pode sair de seu estado quântico para um mundo real, o chamado estado clássico, como abrir a caixa para olhar o gato e forçando-o a estar morto ou vivo. A grande questão sobre os computadores quânticos é se é possível extrair informações sem destruir o sistema quântico inteiramente.

É possível sondar continuamente um sistema muito suavemente para obter um pouco de informação e continuamente corrigí-lo, empurrando-o de volta na trajetória, em direção ao objetivo final.

No mundo da física quântica, um sistema pode estar em dois estados superpostos ao mesmo tempo, desde que ninguém esteja observando. Uma observação perturba o sistema e obriga-o estar em um dos dois estados. As funções de onda emaranhadas originais colapsam em um estado clássico.

Nos últimos 10 anos, teóricos como Andrew N. Jordan, professor de física na Universidade de Rochester, desenvolveram teorias que predizem a forma mais provável em que um sistema quântico entrará em colapso.

trajetória quântica

© Irfan Siddiqi (trajetória quântica)

"A equipe de Rochester desenvolveu novos cálculos para prever o caminho mais provável, com alta precisão, da mesma forma pode-se usar equações de Newtown para prever o caminho menos complicado de uma bola rolando montanha abaixo", disse Siddiqi. "As implicações são significativas, como agora nós podemos projetar sequências de controle para dirigir um sistema ao longo de uma determinada trajetória. Por exemplo, em química pode-se usar isso para preferir certos produtos de uma reação sobre os outros."

O pesquisador Steve Weber, um estudante de graduação no grupo de Siddiqi, e ex-companheiro de pós-doutorado da Siddiqi Kater Murch, agora um professor assistente de física na Universidade de Washington em St. Louis, provou que Jordan tem razão. Eles mediram a trajetória da função de onda de um circuito quântico - um qubit, análogo ao bit em um computador normal - como ele mudou. O circuito, de um pêndulo supercondutor chamado de transmon, poderia estar em dois estados de energia diferentes e foi acoplado a um segundo circuito para obter a tensão final, correspondente à frequência da oscilação.

Se uma reação química for sondada em detalhes, por exemplo, será possível encontrar o caminho mais provável que a reação levaria e projetar uma forma de orientar a reação aos produtos que você quer.

"A experiência demonstra que, para qualquer escolha do estado quântico final, o mais provável ou 'caminho ideal' de conectá-los em um determinado momento pode ser encontrada e prevista", disse Jordan. "Isso confirma a teoria e abre caminho para técnicas de controle quântica ativas."

Fonte: Nature

segunda-feira, 11 de agosto de 2014

A velocidade da luz e a explosão de neutrinos

O efeito da gravidade sobre os pares elétron-pósitron virtuais que se propagam através do espaço pode levar a uma violação do princípio da equivalência de Einstein, segundo cálculos de James Franson da Universidade de Maryland, Baltimore County.

remanescente da supernova SN 1987A

© Chandra (remanescente da supernova SN 1987A)

Enquanto o efeito seria pequeno demais para ser medido diretamente utilizando técnicas experimentais atuais, poderia explicar a enigmática anomalia observada durante a famosa supernova SN1987A de 1987.
Em física teórica moderna, três das quatro forças fundamentais - eletromagnetismo, a força nuclear fraca e a força nuclear forte - são descritos pela mecânica quântica. A quarta força, a gravidade, não tem atualmente uma formulação quântica e é melhor descrita pela teoria geral da relatividade de Einstein. Conciliar relatividade com a mecânica quântica é, portanto, uma área importante e ativa da física.
Uma questão em aberto para os físicos teóricos é como a gravidade age sobre um objeto quântico, como um fóton. Observações astronômicas têm mostrado repetidamente que a luz é atraída por um campo gravitacional. Tradicionalmente, este é descrito usando a relatividade geral: o campo gravitacional curva o espaço-tempo, e a luz é levemente desviada quando passa pela região curvada. Na eletrodinâmica quântica, um fóton propagando através do espaço pode ocasionalmente se aniquilar, criando um par elétron-pósitron virtual. Logo depois, o elétron e o pósitron recombinam para recriar o fóton. Se eles estão em um potencial gravitacional, em seguida, para o pouco tempo que eles existem como partículas maciças, eles sofrem o efeito da gravidade. Quando eles se recombinam, eles vão criar um fóton com uma energia que está ligeiramente deslocada e que viaja um pouco mais lento do que se não houvesse potencial gravitacional. 
Franson analisou estas duas explicações para o porquê da luz diminuir à medida que passa através de um potencial gravitacional. Ele decidiu calcular o quanto a luz deve diminuir de acordo com cada teoria, prevendo que ele iria receber a mesma resposta. No entanto, surgiu uma surpresa: as mudanças previstas na velocidade da luz não combinam, e a discrepância tem algumas consequências muito estranhas.
Franson calculou que, considerando a luz como um objeto de quântico, a mudança na velocidade de um fóton não depende da intensidade do campo gravitacional, mas do próprio potencial gravitacional. No entanto, isso leva a uma violação do princípio da equivalência de Einstein, onde a gravidade e aceleração são indistinguíveis, porque o potencial gravitacional é criado junto com a massa, enquanto que em um referencial acelerado em queda livre, não é. Portanto, pode-se distinguir a gravidade da aceleração se um fóton diminui ou não durante a criação partícula-antipartícula.
Um exemplo importante é um fóton e um neutrino propagando em paralelo através do espaço. Um neutrino não pode aniquilar e criar um par elétron-pósitron, de modo que o fóton vai abrandar mais do que o neutrino que passam por um campo gravitacional, potencialmente permitindo que o neutrino viaje mais rápido do que a luz por aquela região do espaço. No entanto, se o problema é visto em um referencial em queda livre no campo gravitacional, nem o fóton nem o neutrino desacelera em tudo, de modo que o fóton continua a viajando mais rápido do que o neutrino.
Embora a ideia de que as leis da física pode ser dependente de um quadro de referência parece sem sentido, que poderia explicar uma anomalia em 1987 quando eclodiu a supernova SN1987A. Um pulso inicial de neutrinos foi detectado 7,7 horas antes da primeira luz da SN1987a chegar à Terra. Isto foi seguido por um segundo impulso de neutrinos, que chegou cerca de três horas antes da luz da supernova. Supernovas produzem grandes quantidades de neutrinos e o intervalo de três horas entre a segunda explosão de neutrinos e a chegada da luz está de acordo com a teoria atual de como uma estrela colapsa para criar uma supernova.
Pensa-se que o primeiro pulso de neutrinos está geralmente relacionado à supernova. No entanto, a probabilidade de uma tal coincidência é estatisticamente improvável. Se os resultados do Franson estão corretos, então a diferença de 7,7 horas entre o primeiro pulso de neutrinos e com a chegada da luz poderia ser explicado pelo potencial gravitacional da Via Láctea abrandar a luz. Isso não explica por dois pulsos de neutrinos precedeu a luz, mas Franson sugere que o segundo pulso pode estar relacionado a um colapso de duas etapas da estrela.
No entanto Franson é cauteloso, insistindo que "há razões muito sérias para ser cético sobre isso e a pesquisa não tem a pretensão de que é um efeito real, só que é uma possibilidade." Ele também é pessimista sobre as perspectivas para a ideia de ser comprovada ou refutada no futuro próximo, dizendo que as chances de outra supernova tão perto são muito baixas, e outros testes possíveis atualmente não têm precisão suficiente para detectar o efeito.
Raymond Chiao, da Universidade da Califórnia, concorda com Franson que, observacional e experimentalmente, "há uma série de ressalvas que precisam ser esclarecidas", mais notavelmente, que se a interpretação hipotética do Franson sobre SN1987A estiver correta, há dois claros pulsos de neutrinos separados em 5 horas, mas pouca evidência de dois pulsos de luz correspondentes. No entanto, ele diz: "Há uma tensão conceitual profundamente arraigada entre a relatividade geral e a mecânica quântica ... Se, de fato, Franson estiver certo, que é um passo enorme, na minha opinião: é a ponta do iceberg em que a mecânica quântica está correta e a relatividade geral deve estar errada."

Fonte: New Journal of Physics

sábado, 9 de agosto de 2014

Partícula dribla Princípio da Incerteza

A mecânica quântica impõe um limite sobre o que podemos saber sobre partículas subatômicas.

aparato para obter medidas da posição de uma luz laser

© UR (aparato para obter medidas da posição de uma luz laser)

Em teoria, se físicos determinarem a posição de uma partícula, eles não podem medir seu momento ao mesmo tempo. Mas um novo experimento conseguiu contornar essa regra, o famoso “Princípio da Incerteza”, ao definir a posição aproximada de uma partícula, mantendo sua capacidade de também medir seu momento.
O Princípio da Incerteza, formulado por Werner Heisenberg em 1927, é uma consequência da imprecisão do Universo em escalas miscroscópicas. A mecânica quântica revelou que partículas não são apenas mínusculas bolinhas de gude que agem como objetos comuns, que podemos ver e tocar. Em vez de ficarem em local e tempo específicos, partículas subatômicas existem em uma nuvem de probabilidade. Suas chances de estar em qualquer dado estado são descritas por uma equação chamada de “função de onda quântica”. Qualquer ato de medir uma partícula “colapsa” sua função de onda, forçando-a a escolher um valor para a característica medida e eliminando a possibilidade de saber qualquer coisa sobre suas propriedades relacionadas.
Recentemente, físicos decidiram verificar se poderiam superar essa limitação usando uma nova técnica de engenharia chamada de “sensoriamento compressivo”. Essa ferramenta para realizar medidas de precisão já foi aplicada com sucesso a fotografias digitais, ressonâncias magnéticas e muitas outras tecnologias. Normalmente, dispositivos de medição realizam uma leitura detalhada e, em seguida, comprimem essa leitura para facilitar seu uso. Câmeras fotográficas, por exemplo, pegam grandes arquivos em formato RAW e os comprimem em JPEG. No sensoriamento compressivo, porém, engenheiros tentam comprimir um sinal durante o processo de mensuração, o que lhes permite realizar muito menos medidas, o equivalente a capturar imagens diretamente como JPEG em vez de RAW.
Essa mesma técnica de obter a quantidade mínima de informação necessária para uma medida parecia oferecer uma maneira de contornar o Princípio da Incerteza. Para testar o sensoriamento compressivo no mundo quântico, o físico John C. Howell e sua equipe da University of Rochester se puseram a medir posição e momento de um fóton, uma partícula de luz. Eles ativaram um laser em uma caixa equipada com um arranjo de espelhos que poderiam apontar para um detector, ou para a direção oposta. Esses espelhos formavam um filtro, permitindo que fótons passassem por eles em alguns pontos e bloqueando-os em outros. Se um fóton chegasse ao detector, os físicos saberiam que ele havia passado por um dos locais em que os espelhos permitiam sua passagem. O filtro fornecia uma maneira de medir a posição de uma partícula sem saber exatamente onde ela estava, sem colapsar sua função de onda. “Tudo que sabemos é se o fóton consegue atravessar o arranjo ou não”, explica Gregory A. Howland, principal autor de um artigo que relata a pesquisa. “Com esse método ainda conseguimos descobrir seu momento, para onde ele está indo. Mas pagamos um preço por isso: sua medida de direção fica com um pouco de ruído”. Uma medida menos precisa de momento, porém, é melhor que nenhuma.
Os físicos salientam que não quebraram nenhuma lei da física. “Nós não violamos o Princípio da Incerteza”, observa Howland. “Nós só o usamos de maneira inteligente”. A técnica poderia se provar poderosa no desenvolvimento de algumas tecnologias, como criptografia e computação quântica, que procuram controlar as confusas propriedades quânticas de partículas para usá-las em aplicações tecnológicas. Quanto mais informações obtivermos de medições quânticas, melhor será o desempenho dessas tecnologias. O experimento de Howland oferece uma medida quântica mais eficiente do que era tradicionalmente possível, comenta Aephraim M. Steinberg, físico da University of Toronto que não se envolveu na pesquisa. “Essa é uma de várias novas técnicas que parecem determinadas a se provar indispensáveis para a avaliação de grandes sistemas de forma econômica”. Em outras palavras, os físicos parecem ter encontrado uma maneira de conseguir mais dados com menos medidas.

Um artigo foi publicado no periódico Physical Review Letters.

Fonte: Scientific American