segunda-feira, 12 de janeiro de 2015

Máquinas de spins

Uma equipe coordenada pelo físico Roberto Serra, da Universidade Federal do ABC (UFABC), determinou quanta energia um núcleo atômico pode ganhar ou perder quando é atingido por um pulso de ondas de rádio.

spins

© Cornell University/LASSP (spins)

A maioria dos pesquisadores estava convencida de que o comportamento do núcleo seria imprevisível. Jamais se conheceriam as probabilidades de o núcleo absorver energia das ondas, tornando-se mais quente, ou de esfriar ao transmitir parte de sua energia para elas.

As novas experiências feitas no Centro Brasileiro de Pesquisas Físicas (CBPF), no Rio de Janeiro, demonstram que essa troca de energia obedece a leis da física nunca antes testadas no mundo subatômico. Essas leis podem ajudar a entender melhor reações químicas como a fotossíntese das plantas e a determinar quanta energia os computadores quânticos usarão para funcionar. “Esse é o primeiro experimento de uma nova área da física, a termodinâmica quântica”, diz Serra.

Computadores quânticos prometem usar as leis da mecânica quântica para superar exponencialmente o poder de cálculo dos computadores convencionais. Mas quanta energia esse novo tipo de computação gastará na prática? Quanto calor essas máquinas produzirão ao funcionar? Vão precisar de refrigeração? Responder a essas questões é um dos objetivos da termodinâmica quântica.

Perguntas semelhantes pairavam no ar durante a Revolução Industrial, no século XIX. Qual o mínimo de carvão que os fornos precisariam consumir e a que temperatura as caldeiras deveriam chegar para que as máquinas a vapor alcançassem sua eficiência máxima? Os cientistas da época perceberam que tanto o calor quanto a capacidade das máquinas de trabalharem são formas diferentes de uma mesma quantidade física, a energia, que nunca é criada a partir do nada nem destruída, apenas transformada. Ao investigar a conversão de uma forma de energia em outra, eles descobriram as leis da termodinâmica clássica.

De acordo com essas leis, a energia flui espontaneamente de um volume com temperatura quente para outro mais frio. E uma máquina, mesmo que ideal, só pode converter parte da energia disponível na forma de calor em energia capaz de realizar movimentos mecânicos, isto é, realizar o que se conhece em física como trabalho. “A termodinâmica impõe limites a qualquer tecnologia”, diz Serra.

Os engenheiros vitorianos resolveram seus problemas, mas à custa de um pequeno truque. Seus cálculos só funcionavam quando se considerava que as máquinas estavam isoladas termicamente do resto do mundo, trocando pouco calor com o ambiente. Era preciso ainda que esses processos fossem lentos. Mas essas aproximações não servem na maioria das situações que ocorrem na natureza, em muitas reações químicas, por exemplo. Quando é impossível isolar termicamente um objeto de seu ambiente por muito tempo, a temperatura aumenta e diminui de maneira aparentemente imprevisível, ao contrário do que ocorre nos sistemas isolados, onde tudo tende ao equilíbrio.

Foi apenas em 1997 que o físico-químico Christopher Jarzynski descobriu uma expressão matemática capaz de calcular as variações de energia e de trabalho mecânico que acontecem fora do equilíbrio. “A equação de Jarzynski e outros teoremas de flutuação permitem que os químicos meçam em laboratório a variação de energia de uma molécula antes e depois de uma reação”, explica Serra.

O próprio Jarzynski, em colaboração com uma equipe da Califórnia, confirmou sua equação em 2005, observando o trabalho mecânico de uma molécula de RNA esticada e comprimida como uma mola. Serra nota entretanto que, apesar de microscópico, o movimento da molécula de RNA era grande o suficiente para poder ser calculado usando a famosa fórmula derivada das leis da mecânica de Newton: “Trabalho é igual força vezes deslocamento”.

As equações da termodinâmica, seja dentro ou fora do equilíbrio, foram deduzidas usando a mecânica de Newton. Mas as leis de Newton perdem sentido para vários processos que acontecem nas moléculas e para todos os que ocorrem no interior dos átomos por não ser possível medir forças e deslocamentos com precisão. Nessas escalas valem outras leis, as da mecânica quântica. Serra queria saber se equações como a de Jarzinsky ainda valeriam nesse mundo subatômico. Esse conhecimento ajudaria a entender reações químicas como a fotossíntese. Na fotossíntese, moléculas nas células das folhas funcionam como máquinas quânticas que absorvem energia das partículas de luz e a armazenam na forma de moléculas de açúcar. “O processo é muito eficiente, quase não gera calor”, diz Serra. “Estudos sugerem que é um processo quântico.”

Serra, seus alunos e colegas na UFABC tentavam havia algum tempo estudar a termodinâmica quântica em laboratório, junto com a equipe dos físicos Alexandre Souza, Ruben Auccauise, Roberto Sarthour e Ivan Oliveira, que trabalham com a técnica de ressonância magnética nuclear no CBPF. Os dois grupos mantêm uma parceria que já rendeu várias descobertas.

No centro do equipamento no laboratório do CBPF fica um pequeno tubo de ensaio contendo uma solução puríssima de clorofórmio diluído em água. Cada uma dos cerca de 1 trilhão de moléculas de clorofórmio da solução possui um átomo de carbono-13. O núcleo desse tipo de carbono tem uma propriedade quântica chamada spin, que lembra um pouco a agulha de uma bússola magnética e pode ser representada por uma seta. Sob um forte campo magnético paralelo ao tubo, apontando de baixo para cima, as setas desses spins tendem a se alinhar com o campo, metade delas apontando para baixo e metade para cima. O campo magnético também faz com que os spins apontando para baixo tenham mais energia que os spins voltados para cima.

infográfico da máquina quântica

© UFABC/Roberto Serra (infográfico da máquina quântica)

Os físicos manipulam os spins por meio de campos eletromagnéticos, que oscilam com uma frequência de 125 MHz (megahertz); o equipamento precisa ser isolado para não captar as estações de rádio FM que transmitem nessa frequência. Essas manipulações são feitas por meio de pulsos de onda e não duram mais que alguns microssegundos. O experimento acontece tão rapidamente que é como se, por alguns instantes, cada átomo de carbono no tubo de ensaio estivesse isolado do resto do Universo, submetido a uma temperatura muito próxima do zero absoluto (-273º Celsius). Os pesquisadores conseguem diminuir ou aumentar a diferença de energia entre os spins para baixo e para cima quando reduzem ou aumentam a amplitude de suas ondas de rádio. Quando essa mudança de amplitude é muito rápida, os spins saem de seu isolamento térmico e começam tanto a absorver energia das ondas de rádio – situação em que as ondas realizam trabalho sobre os spins – quanto a transmitir parte de sua energia para as ondas, realizando trabalho sobre elas. “Isso é muito difícil de medir, pois os spins dos carbonos podem trocar energia de quatro maneiras diferentes, todas acontecendo ao mesmo tempo, de maneira probabilística”, explica Serra. “Conheci um grupo na Alemanha que tentou fazer esse mesmo experimento por cinco anos sem sucesso.”

O que impediu o sucesso do grupo alemão, segundo Serra, foi o fato de os físicos tentarem medir diretamente quantas vezes a energia era emitida ou absorvida pelos spins. “O erro acumulado nessas medidas era tão grande que no fim não conseguiam determinar nada”, explica.

A solução chegou mais cedo para Serra, em fevereiro de 2013, quando o físico Mauro Paternostro, da Queen’s University, em Belfast, Irlanda, apresentou um seminário na UFABC sobre propostas inéditas de se observar o trabalho produzido por partículas de luz de maneira indireta. Logo Paternostro, atualmente professor visitante na UFABC, e Laura Mazzola, sua colega em Belfast, começaram a discutir com Serra, Auccauise e o estudante de doutorado na UFABC Tiago Batalhão como adaptar essas técnicas para observar o trabalho dos spins de carbono indiretamente. Com John Good, da Universidade de Oxford, Inglaterra, a equipe descobriu um modo esperto de usar os spins dos núcleos de hidrogênio das moléculas de clorofórmio para espiar o que acontece com os spins dos átomos de carbono enquanto realizam trabalho, sem interferir no processo.

A precisão do experimento foi suficiente para registrar variações de temperatura nos spins de carbono da ordem de bilionésimos de graus e verificar que a equação de Jarzinsky vale na escala subatômica. Outro resultado interessante: os spins de carbono possuem uma tendência maior de extrair energia das ondas de rádio quando a amplitude do pulso de onda é reduzida. A tendência se inverte quando a amplitude de onda é aumentada: os spins tendem a transferir energia para as ondas, ou seja, fazer trabalho sobre as ondas.

“Podemos explorar essa diferença para criar uma máquina térmica quântica”, diz Serra. A máquina funcionaria alternando pulsos de amplitude reduzida e aumentada entre dois estados de equilíbrio térmico, cada um com uma temperatura diferente. A máquina funcionaria de maneira parecida com a de um motor a combustão, que realiza trabalho mecânico com parte da energia química transformada em calor com a explosão do combustível.

A máquina de spins teria pouca utilidade: o trabalho produzido forneceria uma energia ínfima para as ondas de rádio, apenas suficiente para mexer o spin de um núcleo atômico qualquer. Serra está mais interessado em medir quanta energia ela gasta e quanto calor ela dissipa durante seu funcionamento.

“A técnica aplicada nesse experimento tem grande potencial”, diz o físico Lucas Céleri, da Universidade Federal de Goiás, que planeja observar a termodinâmica de uma única partícula de luz em parceria com os físicos Paulo Souto Ribeiro e Stephen Walborn, da Universidade Federal do Rio de Janeiro. “Avanços experimentais são muito raros na termodinâmica quântica, devido à necessidade de controlar o sistema quântico e seu isolamento do ambiente.”

Fonte: FAPESP (Pesquisa)

sábado, 10 de janeiro de 2015

Acelerador de partículas compacto

Um acelerador de partículas pequeno atingiu energias que competem com instalações de grande extensão.

XBD201410-01236.TIF

© Berkeley Lab (acelerador de partículas compacto)

O pesquisador Wim Leemans e seus colegas do Laboratório Nacional Lawrence Berkeley (EUA) aceleraram elétrons no interior de um tubo de plasma com apenas 9 cm de comprimento. A velocidade alcançada pelos elétrons correspondeu a uma energia de 4,25 GeV (gigaelétron-volts).

A aceleração em uma distância tão curta corresponde a um gradiente de energia mil vezes maior do que a obtida nos aceleradores de partículas tradicionais e marca um recorde mundial de energia para aceleradores desse tipo, conhecidos como laser-plasma. Em 2013, outra equipe havia alcançado 2 GeV em um acelerador de 2 cm de comprimento.

Neste ano, o LHC (Large Hadron Collider), que tem 27 km de diâmetro, deverá atingir energias totais de 14 TeV (teraelétron-volts). Mas mesmo instalações de tamanho padrão exigem túneis com centenas de metros de comprimento para chegar aos gigaelétron-volts (GeV).

simulação da evolução do plasma

© Berkeley Lab (simulação da evolução do plasma)

A imagem acima mostra uma simulação computadorizada da evolução do plasma no interior do pequeno acelerador.

Aceleradores de partículas tradicionais, como o LHC, aceleram as partículas modulando campos elétricos dentro de conduítes metálicos. É uma técnica que tem um limite de cerca de 100 MeV/m (megaelétron-volts por metro), porque além disso o próprio metal do conduíte é destruído.

Os aceleradores laser-plasma adotam uma abordagem completamente diferente. No caso deste experimento, um pulso de luz laser é injetado em um tubo cheio de plasma por uma abertura de apenas 500 micrômetros. O laser cria um canal através do plasma, assim como ondas que capturam elétrons livres e os aceleram.

A equipe acredita poder alcançar os 10 GeV com este pequeno acelerador de elétrons. Para isso, segundo Leemans, eles precisarão controlar com mais precisão a densidade do canal de plasma através do qual o laser flui. Em essência, eles precisarão criar um túnel para o pulso de luz que tenha o formato preciso para lidar com os elétrons mais energéticos.

O acelerador de partículas de diminuta dimensão depende de um poderoso laser para gerar os pulsos de alta potência que devem ser injetados no plasma. Neste experimento foi usado um dos lasers mais poderosos do mundo, o BELLA (Berkeley Lab Laser Accelerator), capaz de atingir energias na classe dos petawatts (quatrilhões de watts).

Os resultados aparecem no periódico Physical Review Letters.

Fonte: Lawrence Berkeley National Laboratory

sábado, 1 de novembro de 2014

Mundo quântico surge de mundos clássicos?

Uma nova teoria sugere que o comportamento bizarro do mundo quântico, com objetos existindo em dois locais simultaneamente e a luz se comportando tanto como ondas quanto como partículas, poderia resultar de interações entre muitos mundos “paralelos”.

universos paralelos

© Revista Planeta (universos paralelos)

“Essa é uma mudança fundamental em relação a interpretações quânticas anteriores”, declara Howard Wiseman, teórico quântico da Griffith University em Brisbane, na Austrália.
Teóricos já tentaram explicar o comportamento quântico por meio de vários modelos matemáticos. Uma das interpretações mais antigas visualiza o mundo surgindo a partir de existência de muitos mundos quânticos simultâneos. Mas essa abordagem de “muitos mundos”, defendida pelo teórico Hugh Everett III nos anos 50, se baseia em mundos surgindo de maneira independente uns dos outros, sem qualquer interação entre si.
Em contraste, a equipe de Wiseman visualiza muitos mundos se chocando uns com os outros, chamando a abordagem de “muitos mundos em interação”. Quando isolado, cada mundo é governado pela física newtoniana clássica. Juntos, porém, o movimento de interação desses mundos dá origem a fenômenos que físicos normalmente relacionam ao mundo quântico.
Os autores tentam resolver a matemática de como essa interação poderia produzir fenômenos quânticos. Um exemplo bem conhecido do comportamento quântico é partículas que conseguem tunelar através de uma barreira energética que, em um mundo clássico, não conseguiriam atravessar sozinhas. Wiseman aponta que, nesse cenário, conforme dois mundos clássicos se aproximam de uma barreira energética pelos dois lados, um deles aumenta sua velocidade enquanto o outro se choca com a barreira e recua. Dessa forma, o primeiro mundo aparecerá do outro lado de uma barreira aparentemente intransponível, assim como partículas fazem durante o tunelamento quântico.  
Os físicos descrevem vários outros exemplos de fenômenos quânticos que acreditam poder ser explicados por muitos mundos em interação. Eles calculam, por exemplo, como 41 mundos em interação poderiam dar origem à interferência quântica vista no famoso experimento da dupla fenda, que demonstrou que a luz pode se comportar tanto como onda, quanto como partícula.
Mas muito trabalho ainda é necessário. “De forma alguma respondemos todas as perguntas suscitadas por essa mudança”, alerta Wiseman. Dentre outra coisas, ele e seus colaboradores ainda precisam superar desafios como o de explicar como sua teoria de muitos mundos em interação poderia resolver o emaranhamento quântico, um fenômeno em que partículas separadas por grandes distâncias ainda ficam ligadas em termos de suas propriedades.
Wiseman espera poder recrutar outros pesquisadores para ajudar a enfrentar outras perguntas, como os tipos de forças necessárias para que mundos interajam entre si, e se esses mundos precisam de condições iniciais especiais para interagirem de qualquer forma. “O que me motiva é a busca por uma teoria atraente da realidade que reproduza fenômenos quânticos de maneira natural”, conta ele.
Charles Sebens, filósofo da física da University of Michigan, em Ann Arbor, declara estar empolgado com a nova abordagem. Ele desenvolveu ideias semelhantes de maneira independente, que batizou com o nome paradoxal de “Mecânica Quântica Newtoniana”. Essencialmente, ele usa uma abordagem diferente daquela aplicada pelo grupo de Wiseman, ainda que a ideia geral seja a mesma. “Eles produzem análises muito boas de fenômenos particulares, como níveis de energia fundamental e tunelamento quântico; eu discuto probabilidade e simetria com mais profundidade”, explica Sebens. “Acredito que eles fazem um ótimo trabalho apresentando essa empolgante ideia nova”. Sebens escreveu um artigo que será publicado no periódico Philosophy of Science descrevendo sua abordagem.
O próximo passo da equipe será encontrar maneiras de testar seus dados. Wiseman aponta que, se a abordagem de muitos mundos em interação for verdadeira, ela provavelmente fará previsões levemente diferentes da teoria quântica. “Nós ainda não descobrimos como seriam esses desvios, mas eu acho que seriam muito diferentes do tipo de desvios que as pessoas estão procurando atualmente”.

Fonte: Physical Review X

quarta-feira, 15 de outubro de 2014

Partícula de Majorana em ferro supercondutor

Desde a década de 30, cientistas procuram partículas que sejam ao mesmo tempo matéria e antimatéria.

microscópio de tunelamento por varredura

© Princeton University (microscópio de tunelamento por varredura)

Físicos usaram um microscópio de tunelamento por varredura para produzir imagens de uma fina cadeia de átomos de ferro disposta sobre a superfície de um supercondutor de chumbo (barra amarela). As cores da imagem representam a probabilidade quântica de qualquer local conter uma partícula de Majorana, que é tanto matéria quanto antimatéria. A porção ampliada mostra que a probabilidade de encontrar uma partícula de Majorana aumenta muito nas extremidades do fio, como previsto em teoria.

Agora foram encontradas fortes evidências de uma entidade desse tipo dentro de um material supercondutor. A descoberta poderia representar a primeira “partícula de Majorana”, e poderia ajudar pesquisadores a codificar informações para computadores quânticos. 
Acredita-se que todas as partículas de matéria tenham uma contraparte de antimatéria com massa igual, mas carga diferente. Quando a matéria encontra seu equivalente de antimatéria, as duas se aniquilam.
De acordo com uma previsão realizada em 1937 pelo físico italiano Ettore Majorana, porém, algumas partículas podem ser suas próprias parceiras de antimatéria. Pela primeira vez pesquisadores declararam ter produzido imagens de uma dessas partículas de Majorana.
A nova partícula de Majorana apareceu em supercondutor, material em que o livre movimento de elétrons permite que a eletricidade flua sem resistência.
A equipe de pesquisa, conduzida por Ali Yazdani da Princeton University, posicionou uma longa cadeia de átomos de ferro, magnetizável, sobre a superfície de um supercondutor feito de chumbo.
O magnetismo normalmente prejudica supercondutores, que dependem da ausência de campos magnéticos para que seus elétrons fluam livremente. Nesse caso, porém, o campo magnético se transformou em um tipo especial de supercondutor, em que elétrons próximos uns dos outros coordenavam seus spins para satisfazer simultaneamente as exigências de magnetismo e supercondutividade.
Cada um desses pares pode ser entendido como um elétron e um antielétron, com carga negativa e positiva, respectivamente. Mas esse arranjo deixa um elétron em cada ponta da cadeia sem par, fazendo com que assumam as propriedades tanto de elétrons quanto de antielétrons, em outras palavras, de partículas de Majorana.  
Assim como partículas no vácuo, sem contato com outros tipos de matéria, essas entidades são chamadas de “partículas emergentes”. Elas emergem das propriedades coletivas da matéria adjacente e não poderiam existir fora do supercondutor.
O novo estudo mostra uma assinatura convincente de partículas de Majorana, declara Leo Kouwenhoven da Universidade de Tecnologia Delft, na Holanda, que não se envolveu na pesquisa mas que encontrou sinais de partículas de Majorana em um arranjo supercondutor diferente. “Mas para realmente falarmos sobre provas completas e evidências sem ambiguidade, precisaríamos de um teste”.
Esse teste deve mostrar que as partículas não obedecem às leis normais das duas classes de partículas conhecidas na natureza, férmions (prótons, elétrons e a maioria das partículas com que estamos acostumados) e bósons (fótons e outras partículas que carregam forças, incluindo o bóson de Higgs). “A melhor coisa das Majoranas é que elas podem ser uma nova classe de partícula”, adiciona Kouwenhoven. “Se for encontrada uma nova classe de partículas, adiciona-se um novo capítulo à física”.
O físico Jason Alicea do Instituto de Tecnologia da Califórnia, que também não participou da pesquisa, declara que o estudo oferece “evidências convincentes” de partículas de Majorana, mas que “nós deveríamos manter explicações alternativas em mente, mesmo se não houverem candidatos imediatamente óbvios”.
Ele elogiou a configuração experimental por sua aparente capacidade de produzir as elusivas partículas de Majorana com facilidade. “Uma das maiores virtudes de sua plataforma em relação a trabalhos anteriores é permitir que pesquisadores apliquem um novo tipo de microscópio para analisar a anatomia detalhada da física”.
A descoberta poderia ter implicações para a procura de partículas de Majorana livres fora de materiais supercondutores. Muitos físicos suspeitam que neutrinos, partículas extremamente leves com a estranha capacidade de alterar suas identidades, ou “sabores”, sejam partículas de Majorana, e experimentos estão sendo realizados para investigar essa hipótese.
Yazdani aponta que, agora que sabemos que partículas de Majorana podem existir dentro de supercondutores, pode não ser surpreendente encontrá-las na natureza. “Uma vez que o conceito esteja correto, é muito provável que ele apareça em outra camada da física. Isso é empolgante”.
A descoberta também poderia ser útil para construir computadores quânticos que façam uso das leis da mecânica quântica para realizar cálculos muitas vezes mais rapidamente que computadores convencionais.
Um dos principais problemas na construção de um computador quântico é a suscetibilidade de propriedades quânticas, como o emaranhamento (uma conexão tal entre duas partículas, que agir sobre uma delas afeta a outra), a colapsar devido à interferência externa.
Uma cadeia de partículas com Majoranas em cada extremidade seria quase imune a esse risco, porque seria necessário danificar as duas extremidades simultaneamente para destruir quaisquer informações codificadas nela. “Poderíamos construir um bit quântico com base nessas partículas de Majorana”, declara Yazdani. “A ideia é que esse bit seja muito mais robusto para o ambiente que os tipos de bits que já foram tentados até agora”.

A descoberta foi relatada na revista Science.

Fonte: Scientific American

terça-feira, 7 de outubro de 2014

LED para iluminação conduz ao Prêmio Nobel

A Academia Real de Ciências da Suécia concedeu hoje o Prêmio Nobel de Física a Isamu Akasaki, Hiroshi Amano e Shuji Nakamura pela invenção de diodos de luz azul.

Alfred Nobel

© RSAS (efeito de LED simbolizando o Prêmio Nobel)

Os diodos de luz azul proporcionaram uma fonte econômica de luz branca. Além do amplo reconhecimento de seus trabalhos, eles receberão 8 milhões de coroas suecas (US$ 1,1 milhão) para dividir.

Isamu Akasaki nasceu em 1929 em Chiran no Japão. Fez doutorado na Universidade de Nagoia, onde hoje é professor. Hiroshi Amano nasceu em 1960 em Hamamatsu também no Japão, e é professor na mesma universidade. Shuji Nakamura nasceu em 1954 em Ikata, no Japão, mas tem cidadania americana. Com doutorado na Universidade de Tokushima, ele atualmente é professor na Universidade da Califórnia em Santa Bárbara, nos EUA. A imagem abaixo mostra os laureados do Prêmio Nobel de Física de 2014; da esquerda para a direita: Akasaki, de 85 anos, Amano, de 54, e Nakamura, de 60.

laureados do Prêmio Nobel de Física de 2014

© AP (laureados do Prêmio Nobel de Física de 2014)

Por muitos anos, a indústria teve à sua disposição LEDs de cor vermelha e verde. No entanto, para obter luz LED branca, era necessário ter a componente azul.

Nos anos 1990, os cientistas premiados conseguiram produzir essa luz, possibilitando o uso de LEDs para iluminação, com gasto muito menor de energia que a usada pelas lâmpadas incandescentes, com consumo pelo menos 90% menor. O consumo de materiais também é diminuída com LEDs que duram até 100.000 horas, em comparação com 1.000 horas para lâmpadas incandescentes e 10.000 horas para lâmpadas fluorescentes.

A iluminação com LEDs é muito mais eficiente que a de lâmpadas tradicionais. Considerando que quase um quarto da energia elétrica usada no mundo é consumida para iluminar ambientes, sua invenção representa uma considerável economia de recursos naturais, também porque as lâmpadas LED usam menos material e são mais duráveis.

Outra vantagem dessa tecnologia é que seu baixo consumo a torna interessante para uso em lugares onde não há acesso à rede elétrica, como regiões muito isoladas ou muito pobres.

Os laureados desafiaram verdades estabelecidas, trabalharam duro e assumiram riscos consideráveis. Construíram eles mesmos seus equipamentos, e levaram a cabo milhares de experimentos. Na maioria das vezes, eles falharam, mas não se desesperaram, foi arte de laboratório em seu nível mais alto.

Especificamente, o mérito dos pesquisadores foi insistir num determinado material para fazer a luz azul brilhar no LED. Eles elegeram o nitreto de gálio e se esforçaram para criar cristais de qualidade para seu uso em lâmpadas, apesar de muitos outros pesquisadores terem desistido por dificuldades técnicas. Sua decisão foi acertada: entre a década de 1980 e 1990, os vencedores do Nobel publicaram uma série de trabalhos que aperfeiçoaram os processos até a obtenção de um LED azul suficientemente funcional.

As lâmpadas de LED branco emitem uma luz branca brilhante, são duradouras e eficientes em termos de energia. Elas são constantemente aperfeiçoadas, ficando cada vez mais eficientes, com maior fluxo luminoso (medido em lúmen) por unidade de potência elétrica de entrada (medido em watts). Um lúmen é o fluxo luminoso dentro de um cone de 1 esferorradiano, emitido por um ponto luminoso em todas as direções com intensidade de 1 candela. O registro mais recente é pouco mais de 300 lm/W, que pode ser comparado a 16 para lâmpadas comuns e perto de 70 por lâmpadas fluorescentes.

O objetivo principal dos pesquisadores dessa área agora é aumentar a potência dos LEDs, para que menos unidades sejam necessárias para obter um grande poder de iluminação.

A lâmpada LED é uma grande promessa para o aumento da qualidade de vida de mais de 1,5 bilhões de pessoas ao redor do mundo que não têm acesso às redes de eletricidade, devido ao baixo consumo de energia que pode ser alimentado por energia solar barata local.

A invenção do LED azul possui apenas vinte anos de existência, mas já contribuiu para criar luz branca de uma maneira totalmente nova para o benefício de todos nós.

As lâmpadas incandescentes iluminou o século 20; o século 21 será iluminado por lâmpadas de LED!

Fonte: The Royal Swedish Academy of Sciences

segunda-feira, 1 de setembro de 2014

Estranhos neutrinos solares detectados pela primeira vez

Nas profundezas do Sol, pares de prótons se fundem para formar átomos mais pesados, liberando misteriosas partículas chamadas de neutrinos no processo.

detector Borexino

© Colaboração Borexino (detector Borexino)

Acredita-se que essas reações sejam o primeiro passo na cadeia responsável por 99% da energia que o Sol irradia, mas cientistas nunca haviam encontrados provas até agora. Pela primeira vez, físicos capturaram os elusivos neutrinos produzidos pelas reações básicas de fusão de prótons do Sol.
A Terra deveria estar repleta desses neutrinos, cálculos sugerem que aproximadamente 420 bilhões deles atinjam cada polegada quadrada da superfície de nosso planeta por segundo, mas eles são incrivelmente difíceis de encontrar.
Os neutrinos quase nunca interagem com partículas regulares e normalmente passam direto pelos espaços vazios entre os átomos de nossos corpos e de toda matéria convencional. Mas ocasionalmente eles colidem com um átomo, que solta um elétron, criando um rápido flash de luz visível apenas a detectores extremamente sensíveis. Foi assim que o experimento Borexino do Laboratório Nacional Gran Sasso, na Itália, os encontrou.
A detecção dos chamados “neutrinos pp”, os neutrinos criados pela fusão de dois prótons solares, era uma tarefa quase impossível. “A existência desses neutrinos não era questionada. O que queríamos saber era se algum grupo conseguiria construir um detector tão incrivelmente cristalino que permitisse a visualização desses neutrinos de baixa energia em tempo real, evento por evento”, explica Wick Haxton, físico da University of California, Berkeley, que não se envolveu no experimento. “O Borexino conseguiu fazer isso depois de uma longa campanha para isolar e compreender eventos de fundo”.  
O Borexino usa um tanque cheio de cintilador líquido, um material projetado para emitir luz quando recebe energia, contido em uma grande esfera cercada por mil toneladas de água, protegida por camadas e mais camadas de cobertura e enterrada 1,4 quilômetros abaixo do solo.
Essas defesas foram projetadas para impedir a passagem de tudo, menos neutrinos, assim excluindo todos outros tipos de radiação que pudessem imitar o sinal. “Infelizmente isso não é o bastante para neutrinos pp”, observa Andrea Pocar da University of Massachusetts Amherst que também é membro do Borexino e principal autor de um artigo relatando os resultados.

Parte da contaminação de fundo, no entanto, não pode ser bloqueada porque tem origem no próprio experimento. “O maior ruído vem do carbono 14 do cintilador”, explica Pocar.
O carbono 14 é um isótopo radioativo comum na Terra. Seu decaimento previsível permite que arqueólogos datem espécimes ancestrais. Quando decai, porém, o carbono 14 libera um elétron e emite luz muito semelhante à de neutrino pp. Os físicos tiveram que observar uma estreita faixa de energia em que podem distinguir neutrinos pp de decaimentos do carbono 14.
Mesmo assim, de vez em quando átomos de carbono 14 no cintilador decaem simultaneamente e a energia que eles liberam imita exatamente o brilho do neutrino pp. “Tivemos que compreender esses eventos com muita precisão para subtraí-los”, explica Pocar.
A equipe inventou uma nova maneira de contar os eventos, e coletou dados durante vários anos antes de ter certeza que haviam isolado um sinal verdadeiro. “Essa é uma medida muito difícil de realizar”, elogia Mark Chen da Queen’s University em Ontario, no Canadá, que não se envolveu no projeto. “O esforço que o Borexino fez para purificar o cintilador líquido em seu detector valeu a pena”.
A descoberta de neutrinos pp solares é uma confirmação que tranquiliza físicos em relação aos principais modelos teóricos que descrevem o Sol. Experimentos anteriores encontraram neutrinos solares de alta energia criados por estágios mais avançados do processo de fusão envolvendo o decaimento de átomos de boro. Mas os neutrinos pp de baixa energia foram mais difíceis de encontrar; sua detecção completa a ideia sobre a cadeia de fusão do Sol, além de acelerar os planos para a próxima geração de experimentos terrestres com neutrinos.

Durante as observações, foi medido um fluxo de neutrinos de 6,6 x 1010 por cm² por segundo. Isto significa que o Sol tem uma potência de 3,98 x 1026 W (Watts), um valor muito semelhante ao obtido pela medição da energia da radiação solar que ilumina e aquece a Terra, que é de 3,84 x 1026 W.
Uma estranha peculiaridade dessas partículas elementares é que elas existem em três sabores, chamados de elétron, múon e tau, e têm a bizarra capacidade de trocar de sabor ou oscilar. Devido às complexas particularidades nas reações de fusão de prótons, todos os neutrinos do Sol nascem como neutrinos do elétron. No momento em que atingem a Terra, porém, parte deles já se transformou em neutrinos múon e tau.
Cada sabor de neutrino tem uma massa levemente diferente, ainda que físicos não saibam exatamente quais são essas massas. Determinar as massas e como elas ficam ordenadas entre os três sabores é um dos objetivos mais importantes dos experimentos com neutrinos da atualidade. A diferença de massa entre sabores é o principal fator que afeta a oscilação dos neutrinos.
Se neutrinos estão viajando pela matéria, suas interações com ela também alteram suas taxas de oscilação. Tudo indica que as oscilações de neutrinos de  mais alta energia sofrem interferência da matéria, o que propicia maior chance de oscilação, e portanto menos deles sobreviverão como neutrinos do elétron no momento em que chegam à Terra.
O Observatório Sudbury de Neutrinos, em Ontário, e o experimento japonês Super-Kamiokande mediram esse fenômeno décadas atrás, quando detectaram os neutrinos solares de energia mais alta advindos do decaimento do boro. Agora as descobertas do Borexino confirmam o efeito: mais neutrinos de baixa energia vistos pelo Borexino permaneceram com o sabor elétron que os neutrinos de energia mais altas medidos pelos experimentos anteriores. “Isso é importante porque efeitos sobre a matéria só foram vistos no Sol até agora, mas queremos usar esse efeito na Terra em futuros ‘experimentos de linha longa com neutrinos’ para determinar completamente o padrão de massas de neutrino”, declara Haxton.
Esses experimentos, como o Long-Baseline Neutrino Experiment (LBNE) do Fermilab que deve começar em 2022, investigarão como ocorre a oscilação de neutrinos viajando pela matéria. Em vez de usar neutrinos solares, esses projetos criarão poderosos feixes de neutrinos em aceleradores de partículas e refinarão suas rotas para realizar medidas precisas.
O experimento do Fermilab gerará um fluxo de neutrinos de seu laboratório base, perto de Chicago, até a Instalação de Pesquisa Subterrânea de Sanford na Dakota do Sul. Enquanto os neutrinos atravessam cerca de 1.285 quilômetros de manto terrestre em sua jornada (a chamada “linha longa”), muitos oscilarão. Ao estudar como a matéria do manto intrage com os diferentes sabores para afetar suas taxas de oscilação, os pesquisadores esperam revelar quais sabores de neutrinos são mais leves, e quais são mais pesados.
Resolver o mistério da massa dos neutrinos, por sua vez, poderia apontar para uma teoria da física de partículas mais profunda que o Modelo Padrão atual, que não leva em conta as massas dos neutrinos. A última façanha do Borexino (medir neutrinos com precisão) sugere que os experimentos finalmente estão se tornando poderosos o suficiente para extrair esses segredos das elusivas partículas.

Um artigo divulgando os resultados foram publicados na Nature.

Fonte: Scientific American

terça-feira, 12 de agosto de 2014

Assistindo a morte do gato de Schrödinger

Um dos famosos exemplos da estranheza da mecânica quântica é o paradoxo do gato de Schrödinger.

o gato de Schrödinger

© Revista Física (o gato de Schrödinger)

O gato de Schrödinger é um experimento mental, em que um gato é posto em uma caixa onde um frasco de veneno pode ser aberto pelo estado de uma partícula quântica. Se você colocar um gato dentro de uma caixa opaca e fazer a sua vida dependente de um evento aleatório, quando é que o gato morrerá? Quando eventos ocorrerem ao acaso, ou quando você abrir a caixa?

Embora o senso comum sugere que na mecânica quântica a interpretação de "Copenhagen" enunciada pelo físico dinamarquês Niels Bohr em 1920, diz que é o último. Alguém tem que observar o resultado antes que se torne definitiva. Até então, paradoxalmente, o gato está vivo e morto ao mesmo tempo.

Uma equipe de físicos das universidades de Rochester, Berkeley e Washington, pela primeira vez mostrou que, de fato, é possível acompanhar através de todo o processo, se o gato vive ou morre no final.

O paradoxo do gato de Schrödinger é uma questão crítica em computadores quânticos, onde a entrada é um emaranhado de estados, como a vida e morta embaralhada do gato, ainda a resposta para saber se o animal está vivo ou morto tem de ser definida.

"Para Bohr e outros, o processo foi instantâneo, quando você abriu a caixa, o sistema entrou em colapso emaranhado em um estado clássico definido. Este postulado agitado debate na mecânica quântica", disse Irfan Siddiqi, professor associado de física da Universidade da Califórnia, em Berkeley. "Mas o rastreamento em tempo real de um sistema quântico mostra que é um processo contínuo, e que podemos extrair constantemente informações do sistema, uma vez que vai do quântico ao clássico. Este nível de detalhe nunca foi considerado acessível pelos fundadores da teoria quântica".

Para os computadores quânticos, isso permitiria que a correção de erro fosse contínua. O mundo real, onde a luz e o calor hà vibração, um sistema quântico pode sair de seu estado quântico para um mundo real, o chamado estado clássico, como abrir a caixa para olhar o gato e forçando-o a estar morto ou vivo. A grande questão sobre os computadores quânticos é se é possível extrair informações sem destruir o sistema quântico inteiramente.

É possível sondar continuamente um sistema muito suavemente para obter um pouco de informação e continuamente corrigí-lo, empurrando-o de volta na trajetória, em direção ao objetivo final.

No mundo da física quântica, um sistema pode estar em dois estados superpostos ao mesmo tempo, desde que ninguém esteja observando. Uma observação perturba o sistema e obriga-o estar em um dos dois estados. As funções de onda emaranhadas originais colapsam em um estado clássico.

Nos últimos 10 anos, teóricos como Andrew N. Jordan, professor de física na Universidade de Rochester, desenvolveram teorias que predizem a forma mais provável em que um sistema quântico entrará em colapso.

trajetória quântica

© Irfan Siddiqi (trajetória quântica)

"A equipe de Rochester desenvolveu novos cálculos para prever o caminho mais provável, com alta precisão, da mesma forma pode-se usar equações de Newtown para prever o caminho menos complicado de uma bola rolando montanha abaixo", disse Siddiqi. "As implicações são significativas, como agora nós podemos projetar sequências de controle para dirigir um sistema ao longo de uma determinada trajetória. Por exemplo, em química pode-se usar isso para preferir certos produtos de uma reação sobre os outros."

O pesquisador Steve Weber, um estudante de graduação no grupo de Siddiqi, e ex-companheiro de pós-doutorado da Siddiqi Kater Murch, agora um professor assistente de física na Universidade de Washington em St. Louis, provou que Jordan tem razão. Eles mediram a trajetória da função de onda de um circuito quântico - um qubit, análogo ao bit em um computador normal - como ele mudou. O circuito, de um pêndulo supercondutor chamado de transmon, poderia estar em dois estados de energia diferentes e foi acoplado a um segundo circuito para obter a tensão final, correspondente à frequência da oscilação.

Se uma reação química for sondada em detalhes, por exemplo, será possível encontrar o caminho mais provável que a reação levaria e projetar uma forma de orientar a reação aos produtos que você quer.

"A experiência demonstra que, para qualquer escolha do estado quântico final, o mais provável ou 'caminho ideal' de conectá-los em um determinado momento pode ser encontrada e prevista", disse Jordan. "Isso confirma a teoria e abre caminho para técnicas de controle quântica ativas."

Fonte: Nature

segunda-feira, 11 de agosto de 2014

A velocidade da luz e a explosão de neutrinos

O efeito da gravidade sobre os pares elétron-pósitron virtuais que se propagam através do espaço pode levar a uma violação do princípio da equivalência de Einstein, segundo cálculos de James Franson da Universidade de Maryland, Baltimore County.

remanescente da supernova SN 1987A

© Chandra (remanescente da supernova SN 1987A)

Enquanto o efeito seria pequeno demais para ser medido diretamente utilizando técnicas experimentais atuais, poderia explicar a enigmática anomalia observada durante a famosa supernova SN1987A de 1987.
Em física teórica moderna, três das quatro forças fundamentais - eletromagnetismo, a força nuclear fraca e a força nuclear forte - são descritos pela mecânica quântica. A quarta força, a gravidade, não tem atualmente uma formulação quântica e é melhor descrita pela teoria geral da relatividade de Einstein. Conciliar relatividade com a mecânica quântica é, portanto, uma área importante e ativa da física.
Uma questão em aberto para os físicos teóricos é como a gravidade age sobre um objeto quântico, como um fóton. Observações astronômicas têm mostrado repetidamente que a luz é atraída por um campo gravitacional. Tradicionalmente, este é descrito usando a relatividade geral: o campo gravitacional curva o espaço-tempo, e a luz é levemente desviada quando passa pela região curvada. Na eletrodinâmica quântica, um fóton propagando através do espaço pode ocasionalmente se aniquilar, criando um par elétron-pósitron virtual. Logo depois, o elétron e o pósitron recombinam para recriar o fóton. Se eles estão em um potencial gravitacional, em seguida, para o pouco tempo que eles existem como partículas maciças, eles sofrem o efeito da gravidade. Quando eles se recombinam, eles vão criar um fóton com uma energia que está ligeiramente deslocada e que viaja um pouco mais lento do que se não houvesse potencial gravitacional. 
Franson analisou estas duas explicações para o porquê da luz diminuir à medida que passa através de um potencial gravitacional. Ele decidiu calcular o quanto a luz deve diminuir de acordo com cada teoria, prevendo que ele iria receber a mesma resposta. No entanto, surgiu uma surpresa: as mudanças previstas na velocidade da luz não combinam, e a discrepância tem algumas consequências muito estranhas.
Franson calculou que, considerando a luz como um objeto de quântico, a mudança na velocidade de um fóton não depende da intensidade do campo gravitacional, mas do próprio potencial gravitacional. No entanto, isso leva a uma violação do princípio da equivalência de Einstein, onde a gravidade e aceleração são indistinguíveis, porque o potencial gravitacional é criado junto com a massa, enquanto que em um referencial acelerado em queda livre, não é. Portanto, pode-se distinguir a gravidade da aceleração se um fóton diminui ou não durante a criação partícula-antipartícula.
Um exemplo importante é um fóton e um neutrino propagando em paralelo através do espaço. Um neutrino não pode aniquilar e criar um par elétron-pósitron, de modo que o fóton vai abrandar mais do que o neutrino que passam por um campo gravitacional, potencialmente permitindo que o neutrino viaje mais rápido do que a luz por aquela região do espaço. No entanto, se o problema é visto em um referencial em queda livre no campo gravitacional, nem o fóton nem o neutrino desacelera em tudo, de modo que o fóton continua a viajando mais rápido do que o neutrino.
Embora a ideia de que as leis da física pode ser dependente de um quadro de referência parece sem sentido, que poderia explicar uma anomalia em 1987 quando eclodiu a supernova SN1987A. Um pulso inicial de neutrinos foi detectado 7,7 horas antes da primeira luz da SN1987a chegar à Terra. Isto foi seguido por um segundo impulso de neutrinos, que chegou cerca de três horas antes da luz da supernova. Supernovas produzem grandes quantidades de neutrinos e o intervalo de três horas entre a segunda explosão de neutrinos e a chegada da luz está de acordo com a teoria atual de como uma estrela colapsa para criar uma supernova.
Pensa-se que o primeiro pulso de neutrinos está geralmente relacionado à supernova. No entanto, a probabilidade de uma tal coincidência é estatisticamente improvável. Se os resultados do Franson estão corretos, então a diferença de 7,7 horas entre o primeiro pulso de neutrinos e com a chegada da luz poderia ser explicado pelo potencial gravitacional da Via Láctea abrandar a luz. Isso não explica por dois pulsos de neutrinos precedeu a luz, mas Franson sugere que o segundo pulso pode estar relacionado a um colapso de duas etapas da estrela.
No entanto Franson é cauteloso, insistindo que "há razões muito sérias para ser cético sobre isso e a pesquisa não tem a pretensão de que é um efeito real, só que é uma possibilidade." Ele também é pessimista sobre as perspectivas para a ideia de ser comprovada ou refutada no futuro próximo, dizendo que as chances de outra supernova tão perto são muito baixas, e outros testes possíveis atualmente não têm precisão suficiente para detectar o efeito.
Raymond Chiao, da Universidade da Califórnia, concorda com Franson que, observacional e experimentalmente, "há uma série de ressalvas que precisam ser esclarecidas", mais notavelmente, que se a interpretação hipotética do Franson sobre SN1987A estiver correta, há dois claros pulsos de neutrinos separados em 5 horas, mas pouca evidência de dois pulsos de luz correspondentes. No entanto, ele diz: "Há uma tensão conceitual profundamente arraigada entre a relatividade geral e a mecânica quântica ... Se, de fato, Franson estiver certo, que é um passo enorme, na minha opinião: é a ponta do iceberg em que a mecânica quântica está correta e a relatividade geral deve estar errada."

Fonte: New Journal of Physics

sábado, 9 de agosto de 2014

Partícula dribla Princípio da Incerteza

A mecânica quântica impõe um limite sobre o que podemos saber sobre partículas subatômicas.

aparato para obter medidas da posição de uma luz laser

© UR (aparato para obter medidas da posição de uma luz laser)

Em teoria, se físicos determinarem a posição de uma partícula, eles não podem medir seu momento ao mesmo tempo. Mas um novo experimento conseguiu contornar essa regra, o famoso “Princípio da Incerteza”, ao definir a posição aproximada de uma partícula, mantendo sua capacidade de também medir seu momento.
O Princípio da Incerteza, formulado por Werner Heisenberg em 1927, é uma consequência da imprecisão do Universo em escalas miscroscópicas. A mecânica quântica revelou que partículas não são apenas mínusculas bolinhas de gude que agem como objetos comuns, que podemos ver e tocar. Em vez de ficarem em local e tempo específicos, partículas subatômicas existem em uma nuvem de probabilidade. Suas chances de estar em qualquer dado estado são descritas por uma equação chamada de “função de onda quântica”. Qualquer ato de medir uma partícula “colapsa” sua função de onda, forçando-a a escolher um valor para a característica medida e eliminando a possibilidade de saber qualquer coisa sobre suas propriedades relacionadas.
Recentemente, físicos decidiram verificar se poderiam superar essa limitação usando uma nova técnica de engenharia chamada de “sensoriamento compressivo”. Essa ferramenta para realizar medidas de precisão já foi aplicada com sucesso a fotografias digitais, ressonâncias magnéticas e muitas outras tecnologias. Normalmente, dispositivos de medição realizam uma leitura detalhada e, em seguida, comprimem essa leitura para facilitar seu uso. Câmeras fotográficas, por exemplo, pegam grandes arquivos em formato RAW e os comprimem em JPEG. No sensoriamento compressivo, porém, engenheiros tentam comprimir um sinal durante o processo de mensuração, o que lhes permite realizar muito menos medidas, o equivalente a capturar imagens diretamente como JPEG em vez de RAW.
Essa mesma técnica de obter a quantidade mínima de informação necessária para uma medida parecia oferecer uma maneira de contornar o Princípio da Incerteza. Para testar o sensoriamento compressivo no mundo quântico, o físico John C. Howell e sua equipe da University of Rochester se puseram a medir posição e momento de um fóton, uma partícula de luz. Eles ativaram um laser em uma caixa equipada com um arranjo de espelhos que poderiam apontar para um detector, ou para a direção oposta. Esses espelhos formavam um filtro, permitindo que fótons passassem por eles em alguns pontos e bloqueando-os em outros. Se um fóton chegasse ao detector, os físicos saberiam que ele havia passado por um dos locais em que os espelhos permitiam sua passagem. O filtro fornecia uma maneira de medir a posição de uma partícula sem saber exatamente onde ela estava, sem colapsar sua função de onda. “Tudo que sabemos é se o fóton consegue atravessar o arranjo ou não”, explica Gregory A. Howland, principal autor de um artigo que relata a pesquisa. “Com esse método ainda conseguimos descobrir seu momento, para onde ele está indo. Mas pagamos um preço por isso: sua medida de direção fica com um pouco de ruído”. Uma medida menos precisa de momento, porém, é melhor que nenhuma.
Os físicos salientam que não quebraram nenhuma lei da física. “Nós não violamos o Princípio da Incerteza”, observa Howland. “Nós só o usamos de maneira inteligente”. A técnica poderia se provar poderosa no desenvolvimento de algumas tecnologias, como criptografia e computação quântica, que procuram controlar as confusas propriedades quânticas de partículas para usá-las em aplicações tecnológicas. Quanto mais informações obtivermos de medições quânticas, melhor será o desempenho dessas tecnologias. O experimento de Howland oferece uma medida quântica mais eficiente do que era tradicionalmente possível, comenta Aephraim M. Steinberg, físico da University of Toronto que não se envolveu na pesquisa. “Essa é uma de várias novas técnicas que parecem determinadas a se provar indispensáveis para a avaliação de grandes sistemas de forma econômica”. Em outras palavras, os físicos parecem ter encontrado uma maneira de conseguir mais dados com menos medidas.

Um artigo foi publicado no periódico Physical Review Letters.

Fonte: Scientific American

sexta-feira, 8 de agosto de 2014

Medido rastro de “chuveiro atmosférico”

Uma equipe internacional de pesquisadores descobriu uma nova forma de estudar os rastros deixados pelos "chuveiros atmosféricos".

raios cósmicos ultraenergéticos

© ASPERA (raios cósmicos ultraenergéticos)

O grupo é constituído por 102 cientistas de diversas universidades do mundo, entre eles o docente do Instituto de Física de São Carlos (IFSC/USP), Luiz Vitor de Souza Filho.

A união desse número expressivo de pesquisadores explica-se pela participação de todos eles em experimentos realizados no Observatório Pierre Auger, instalado aos pés da Cordilheira dos Andes, no Deserto de El Nihuil, na Argentina, e com o objetivo principal de detectar e estudar raios cósmicos ultra-energéticos, partículas que podem alcançar energias cerca de 1.000 vezes maiores do que as obtidas pelos atuais aceleradores de partículas.

Desde sua fundação, o Observatório Pierre Auger trabalha com duas ferramentas distintas para medição dos raios ultra-energéticos: a de "tanques de água", também conhecidos por "detectores de Cherenkov", e a de telescópios de fluorescência. Uma terceira, recém-descoberta, a "técnica de detectores de rádio", vem não para "aposentar" as anteriores, mas sim complementá-las. "Os membros do Observatório buscam, continuamente, o desenvolvimento de técnicas novas que tragam medidas mais precisas e detalhadas para, dessa forma, ampliar as possibilidades do Observatório como um todo", explica Luiz Vitor.

Através da técnica de detectores de rádio, descrita no artigo publicado na Physical Review D, intitulado Probing the radio emission from air showers with polarization measurements, são medidos os rastros deixados pelos "chuveiros atmosféricos" (air shower), cascatas de partículas que atravessam a atmosfera ininterruptamente. Invisível a olho nu, esse chuveiro, que é composto por prótons, elétrons, neutrinos, mésons e diversas outras partículas, atravessa os tanques de água deixando um tipo de "impressão digital", que será analisada pela nova técnica: "No trajeto entre a atmosfera e o solo, as partículas interagem com o hidrogênio presente no ar e emitem um flash luminoso muito fraco, visualizado pelos telescópios, e, ao mesmo tempo, emitem ondas de rádio", detalha Luiz Vitor.

A identificação e medição dessas ondas serão feitas por um conjunto de antenas espalhadas por uma grande área. Através de um sinal sincronizado entre elas, ondas de rádio emitidas pelo chuveiro atmosférico serão identificadas e, posteriormente, medidas.

Por ser largamente difundida para outros usos, a técnica de detectores de rádio não exige um grande desenvolvimento tecnológico para sua adaptação aos propósitos específicos do Observatório e tem um custo muito baixo. E, embora ainda não estejam sendo utilizados no Observatório, os detectores de rádio já estão hospedados no Pierre Auger há cinco anos. "No deserto, onde eles estão instalados, o local é ótimo para realização desses experimentos, pois a poluição de sinais e ruídos advindos de ondas de rádio em geral é quase nula", explica o docente.

O artigo trouxe detalhes sobre a operação dos novos detectores e a explicação e desenvolvimento da técnica de rádio. Por esse motivo, nenhum objetivo de astrofísica é mencionado. "Na literatura, duas teorias explicavam dois efeitos diferentes para emissão de ondas de rádio pelo chuveiro atmosférico: Efeito geomagnético e Efeito Askaryan, mas as evidências nunca haviam sido medidas. Esse, provavelmente, foi motivo pelo qual o artigo ganhou destaque e foi aceito numa importante revista científica da área", conta Luiz Vitor.

O próximo passo para o aprimoramento da pesquisa é o investimento, tanto financeiro quanto intelectual, no projeto. "Embora os resultados tenham sido positivos, a técnica de rádio mostrou algumas falhas, o que não a torna o 'carro-chefe' de uma nova etapa do Observatório. Apesar disso, os resultados são bons o suficiente para que continuemos investindo, mesmo que, paralelamente, outras técnicas também sejam investigadas", afirma Luiz Vitor. "Um dos objetivos do Observatório, inclusive, é se tornar um centro de medidas em astrofísica de partículas, o que reforça a intenção de reunir e estudar outros processos".

Mesmo que num primeiro momento a astrofísica não seja o foco do projeto, a técnica de rádio, apesar de suas limitações, poderá ajudar a trazer explicações que serão utilizadas para o constante melhoramento dos experimentos. Isso permitirá que diversas interrogações sejam finalmente esclarecidas e, consequentemente, possibilitará que a astrofísica avance no seu papel principal de desvendar os inúmeros enigmas de nosso Universo.

Fonte: IFSC/USP

sexta-feira, 16 de maio de 2014

Elemento 117 e estabilidade de átomos

Físicos criaram um dos elementos mais pesados já vistos: um átomo com 117 prótons em seu núcleo.

ununséptio

© LLNL (ununséptio)

Esse gigante fica nos limites da tabela periódica, onde núcleos inflados tendem a se tornar cada vez menos estáveis. Mas a existência do elemento 117 dá esperança a cientistas: eles podem estar se aproximando da lendária “ilha de estabilidade” onde núcleos com os chamados ‘números mágicos’ de prótons e nêutrons passam a ter vida longa.
Elementos mais pesados que o urânio (que tem 92 prótons) não são comumente encontrados na natureza, mas podem ser criados em laboratórios. Um problema surge devido à configuração dos prótons, pois quanto maior um núcleo atômico se torna, mais seus prótons repelem uns aos outros com suas cargas positivas. Isso, em geral, os torna menos estáveis, ou mais radioativos. O elemento 117, por exemplo, tem uma meia-vida de 50 milésimos de segundo, o que significa que dentro desse tempo, metade dele decairá em um elemento mais leve.
Uma equipe de russos e americanos criou o elemento 117 pela primeira vez em 2010, no Instituto Conjunto de Pesquisa Nuclear em Dubna, na Rússia. O elemento ainda não é considerado oficial, e precisa ser formalmente aceito e adicionado à tabela periódica pela União Internacional de Química Pura e Aplicada (IUPAC). O livermório (elemento 116) é até agora o mais superpesado a ter sido confirmado.

A nova aparição do 117, em experimentos do Centro GSI Helmholtz de Pesquisa com Íons Pesados em Darmstadt, na Alemanha, deve ajudar o elemento a receber reconhecimento oficial. “Em contraste com a primeira descoberta, nós somos uma equipe diferente, em um local diferente, usando um dispositivo diferente”, observa Christoph Düllmann, que conduziu a colaboração do GSI. “Eu acho que isso vai mudar a visão que a comunidade científica tem sobre elemento 117. Ele deve passar de um elemento que se alegava ter sido observado, para um elemento confirmado”.
Para criar o 117, que tem o nome temporário de ‘ununséptio’, os pesquisadores fizeram núcleos de cálcio (com 20 prótons cada um) se chocarem contra núcleos de berquélio (97 prótons).
O experimento demorou a ser realizado, em parte, porque é difícil conseguir berquélio. “Nós tivemos que fazer uma parceria com o único local do planeta onde o berquélio pode ser produzido e isolado em quantidade significativa”, explica Düllmann. Esse local é o Laboratório Nacional Oak Ridge, no Tennessee, que tem um reator nuclear capaz de criar esse raro elemento com uma meia-vida de 330 dias.
A instalação precisou de aproximadamente dois anos para estocar a quantidade de berquélio necessária para o experimento; quando cerca de 13 miligramas foram acumulados, cientistas de Oak Ridge enviaram o elemento para a Alemanha, para começar a próxima fase do projeto.
No GSI, pesquisadores aceleraram íons de cálcio a 10% da velocidade da luz, e fizeram com que colidissem com o berquélio. Quando um núcleo de cálcio colidia diretamente com um de berquélio, ocasionalmente os dois se fundiam, dando origem a um novo elemento com um total de 117 prótons. “Nós produzimos cerca de um átomo por semana”, conta Düllmann.
O elemento 117 não foi observado diretamente. O que os cientistas fizeram foi procurar seus subprodutos após ele ter decaído radioativamente emitindo partículas alfa – núcleos de hélio com dois prótons e dois nêutrons. “Os núcleos pesados realizam o decaimento alfa para produzir o elemento 115, e ele também decai por meio de partículas alfa”, explica Jadambaa Khuyagbaatar do GSI.

Após alguns passos nessa cadeia de decaimento, um dos núcleos produzidos é o isótopo laurêncio-266, um núcleo com 103 prótons e 163 nêutrons que nunca fora visto antes. Isótopos anteriormente conhecidos de laurêncio têm menos nêutrons, e são menos estáveis. Essa nova espécie, porém, têm uma meia-vida incrivelmente longa de 11 horas, o que o torna um dos isótopos superpesados mais longevos conhecidos. “Talvez nós estejamos na praia da ilha de estabilidade”, brinca Düllmann.
Ninguém sabe com certeza onde fica essa ilha, ou sequer se ela existe. A teoria sugere que os próximos números mágicos além dos conhecidos ficam por volta de 108, 110 ou 114 prótons, e 184 nêutrons. Essas configurações, de acordo com cálculos, poderiam levar a propriedades especiais que permitem que átomos sobrevivem muito mais tempo que espécies semelhantes. “Todos os dados existentes para os elementos 116, 117 e 118 confirmam que o tempo de vida aumenta conforme nos aproximamos de 184 nêutrons”, declara o teórico Witold Nazarewicz de Oak Ridge, que não se envolveu no estudo.

Núcleos mágicos superpesados podem acabar tendo formas interessantes que conferem estabilidade, como a chamada “configuração bolha” com um buraco no meio. “Esses núcleos ainda não foram descobertos, mas a região que está sendo explorada no momento realmente fica na fronteira do território das bolhas”, aponta Nazarewicz.
Se uma ilha de estabilidade realmente existir, não há limite para a duração de seus núcleos. Eles podem acabar sendo estáveis o bastante para serem encontrados na natureza, mesmo que em quantidades tão pequenas que ainda não os encontramos. Vários pesquisadores estão procurando evidências dessas espécies superpesadas já existentes, que talvez tenham se formado por meio de poderosos eventos cósmicos como a fusão de duas estrelas de nêutrons. Ainda que nenhum deles tenha sido encontrado até agora, cientistas têm esperanças de que evidências da ilha de estabilidade estejam logo adiante, existindo ou não.

Um artigo relatando os resultados foi publicado em 1º de maio no Physical Review Letters.

Fonte: Scientific American e New Scientist

domingo, 13 de abril de 2014

Mais uma partícula exótica atinge IceCube

O experimento IceCube foi atingido por três neutrinos carregados de energias superiores à elevada faixa de voltagem 1015 PeV (Peta elétron-Volts), sugerindo que eles podem ser irradiados por explosões titânicas nas profundezas do espaço.

IceCube

© NSF/C. Pobes (IceCube)

Até o momento, a instalação subterrânea no polo sul já descobriu três dos neutrinos mais energéticos já encontrados; partículas que talvez sejam criadas nas explosões mais violentas do Universo. Todos esses neutrinos têm energias na escala absurdamente alta de PeV, uma energia aproximadamente equivalente a um milhão de vezes a massa de um próton. Como Albert Einstein mostrou em sua famosa equação E = mc2, energia e massa são equivalentes, e uma quantidade tão grande de massa se converte em um nível extremo de energia.
O experimento, chamado IceCube, revelou a descoberta dos dois primeiros neutrinos, apelidados Ernie e Bert, no ano passado. A descoberta do terceiro foi anunciada no dia 7 de abril no encontro da Sociedade Física Americana, em Savannah. “Internamente, ele é conhecido como Big Bird”, informou o físico do IceCube Chris Weaver, da University Wisconsin-Madison.
Esses neutrinos são valiosos por serem muito “reservados”, raramente interagindo com outras partículas. Além disso, como não possuem cargas energéticas, sua direção nunca é desviada por campos magnéticos no Universo. Por essa razão, suas trajetórias deveriam apontar diretamente para suas fontes de origem que, na opinião de astrônomos, poderiam ser diversos eventos intensos, como gigantescos buracos negros incorporando matéria, explosões chamadas erupções de raios gama ou galáxias formando estrelas a ritmos alucinantes.
A propensão a não interagir dificulta imensamente a detecção de neutrinos. O experimento IceCube procura registrar as ocasiões extremamente raras quando neutrinos colidem com átomos em um quilômetro cúbico (km3) de gelo enterrado abaixo do polo sul. Essa blindagem é necessária para filtrar (eliminar) colisões de outras partículas, mas ela não inibe neutrinos.
O experimento aproveita o gelo naturalmente puro do local, utilizando uma região subterrânea que tem duas vezes a profundidade do Grand Canyon.
Milhares de detectores de luz estão embutidos no gelo para captar os pequenos “blips”, pontos de luz criados quando neutrinos são capturados. Essas interações não são tão frequentes que pesquisadores do IceCube tiveram que procurar durante dois anos para encontrar os três neutrinos de alta energia.
Durante esse período o instrumento também detectou 34 neutrinos de energias um pouco mais baixas. Acredita-se que alguns deles sejam contaminações criadas quando partículas carregadas, chamadas raios cósmicos, atingem a atmosfera da Terra, mas uma parcela das capturas do IceCube provavelmente veio diretamente de processos violentos no Cosmos. Essas partículas são chamadas neutrinos astrofísicos. “Parece que conseguimos reunir evidências convincentes de neutrinos astrofísicos”, comemora o físico Albrecht Karle, da University of Wisconsin-Madison e membro da equipe do IceCube.
Os próprios raios cósmicos são um mistério.
Acredita-se que os mais enérgicos entre eles tenham origem nos mesmos processos que geram neutrinos astrofísicos. Mas como raios cósmicos (que, apesar do nome, na realidade são partículas de alta energia) têm cargas energéticas, eles viajam através do Universo por caminhos curvos, moldados por campos magnéticos.
O resultado disso é que eles não preservam informações de onde vieram. Estudar neutrinos é uma maneira de tentar entender a origem dos raios cósmicos de alta energia que, de algum modo, são acelerados a uma velocidade quase igual à da luz em algum tipo de acelerador de partículas cósmico.
Mas como, exatamente, isso acontece é uma questão em aberto que apenas mostra o quanto não sabemos sobre os processos mais violentos no Universo. “Esse é o maior mistério de nosso século”, admite Toshihiro Fujii, um pesquisador de raios cósmicos do Instituto Kavli para Física Cosmológica da University of Chicago. Fujii não esteve envolvido no experimento IceCube, mas garante que seus resultados ajudarão sua meta de compreender os raios cósmicos.
Um debate que envolve neutrinos de alta energia e raios cósmicos é se eles vêm de fontes galácticas ou extragalácticas; em outras palavras: eles se originam dentro ou fora de nossa galáxia, a Via Láctea?
A maioria das teorias favorece fontes extragalácticas como núcleos galácticos ativos, buracos negros supermassivos nos centros de outras galáxias que se alimentam de matéria.
Outra opção seriam erupções de raios gama, as explosões mais brilhantes conhecidas no Universo, que podem ocorrer durante o nascimento de algumas supernovas ou quando duas estrelas de nêutrons se fundem.
Outra possibilidade é que essas partículas são um subproduto de galáxias que estão colidindo e enviando ondas de choque através de seus gases, fazendo com que estrelas se formem a velocidades fantásticas.
Também é possível que a matéria escura, que supera de longe a matéria conhecida no Universo, esteja, de alguma forma, criando raios cósmicos e neutrinos de alta energia.
Com base na direção em que os 37 neutrinos viajavam quando atingiram o IceCube, poucos deles parecem ter se originado no plano galáctico, a parte mais densa da Via Láctea. Isso sugere que eles vieram de fora da nossa galáxia. “Alguns dos eventos mais interessantes estão muito distantes do plano galáctico”, salientou Nathan Whitehorn, pesquisador do IceCube na University Wisconsin-Madison.

À medida que o experimento capturar mais neutrinos de alta energia nos próximos anos, o mapa do IceCube de fontes de neutrinos no céu será aprimorado.
Cientistas estão particularmente interessados em descobrir se qualquer uma das partículas que o IceCube detecta pode ser rastreada até objetos cosmológicos conhecidos, como núcleos galácticos ativos visíveis ou erupções de raios gama. “Até hoje não temos qualquer evidência de correlação com uma fonte conhecida”, admite Naoko Kurahashi Neilson, outro colaborador do projeto IceCube na University Wisconsin-Madison.

Fonte: Scientific American

segunda-feira, 24 de fevereiro de 2014

Discrepância cósmica e existência de neutrinos

Os neutrinos, algumas das partículas mais numerosas do Universo, também estão entre as mais misteriosas.

neutrino de elétron aparece no detector Super Kamiokande

© T2K (neutrino de elétron aparece no detector Super Kamiokande)

A imagem mostra Um candidato a neutrino de elétron aparece no detector Super Kamiokande, do experimento japonês T2K, que já observou um número recorde de neutrinos trocando de “sabor”.

Nós sabemos que eles têm massa, mas não quanta massa. Sabemos que eles têm pelo menos três tipos, ou “sabores”, mas podem existir mais.
Um novo estudo descobriu que uma discrepância entre observações de aglomerados galácticos e medidas da radiação cósmica de fundo poderiam ser explicadas se neutrinos fossem mais massivos do que se acredita normalmente. Isso também oferece indícios tentadores da existência de um quarto tipo de neutrino, que até agora nunca foi observado.
A tensão entre aglomerados galácticos e a radiação cósmica de fundo (CMB, em inglês) é um problema cada vez maior, mas que talvez possa ser resolvido com a obtenção de dados melhores nos próximos anos.
A radiação de fundo mostra as pequenas variações de densidade no Universo primitivo que fizeram a matéria se acumular em alguns lugares e deixar espaços vazios em outros. O resultado final dessa aglomeração pode ser visto no Universo recente, com a disseminação de aglomerados galácticos pelo espaço.
As melhores medidas da radiação cósmica de fundo vieram do telescópio orbital Planck da ESA, em março de 2013.
Medidas de aglomerados galácticos, por outro lado, vêm de vários métodos, e entre eles está o mapeamento da disseminação de massa pelo Universo; esse mapeamento é realizado com a localização de lentes gravitacionais, a curvatura da luz provocada por aglomerados galácticos.
As duas medidas, porém, são discrepantes entre si. “Nós comparamos o Universo primitivo com o Universo mais recente, e temos um modelo que extrapola os dois”, explica Richard Battye da University of Manchester, na Inglaterra. “Se ficarmos com o modelo que se adequa aos dados da radiação cósmica de fundo, o número de aglomerados encontrados se torna menor que o esperado por um fator de dois”.
A discrepância poderia ser explicada se neutrinos tiverem atrapalhado o processo de formação de aglomerados galácticos, o que é uma possibilidade se essas partículas tiverem massa suficiente.
Acredita-se que em algum momento do passado o Universo cruzou um limiar energético que correspondia à massa dos neutrinos: quando o Universo ainda era quente e denso, no início de sua vida, neutrinos teriam sido relativísticos, movendo-se à velocidade da luz. Nesse estado, eles não teriam se aglomerado sob a força de sua própria atração gravitacional.
Após o Universo esfriar e cruzar o limiar energético, porém, neutrinos teriam desacelerado e começado a se mover a velocidades sub-luminares. Então eles finalmente teriam começado a se aglomerar como o resto da matéria do Universo. “O número de aglomerados galácticos que veríamos no Universo é uma função da massa dos neutrinos”, explica Battye. “Quanto mais massivos eles forem, maior sua contribuição para a densidade total de matéria do Universo, e eles acabam limitando levemente o processo de formação de aglomerados galácticos”.
Battye e seu colaborador, Adam Moss da University of Nottingham, na Inglaterra, descobriram que o número de aglomerados que vemos atualmente pode ser explicado se as massas dos três neutrinos conhecidos chegarem a aproximadamente 0,32 elétron-volt (com uma variação de 0,081), ou cerca de um terço de bilionésimo da massa de um próton.
Estimativas anteriores sugeriram que a massa dos neutrinos só precisaria atingir 0,06 elétron-volt. Uma massa total tão grande seria surpreendente e “muito interessante, com várias consequências positivas”, observa o físico teórico André de Gouvêa da Northwestern University, que não se envolveu no estudo.
Isso indicaria, por exemplo, que os três sabores de neutrino – elétron, múon e tau – têm quase exatamente a mesma massa, o que seria um pouco inesperado. Isso “teria um impacto sobre a maneira com que tentamos compreender o mecanismo por trás de massas de neutrino”, aponta Gouvêa.
Além disso, Battye e Moss encontraram evidências de que um quarto tipo de neutrino pode existir: um que seja “estéril”.
“A ideia é muito empolgante”, declara o físico Joseph Formaggio do Instituto de Tecnologia de Massachusetts, que também não participou do estudo. “Nós esperamos encontrar três neutrinos. Mas com quatro haverá uma física além do Modelo Padrão”.
Os três neutrinos conhecidos têm a capacidade bizarra de trocar de sabor. Um neutrino estéril não seria capaz de fazer isso, e teria uma interação ainda mais fraca com a matéria comum que os sabores conhecidos, que já são bem tímidos.
Há muito tempo teóricos sugerem que neutrinos estéreis podem existir, mas até agora não há provas disso. Indícios recentes de alguns aceleradores de partículas, porém, começaram a sugerir que eles estão por aí. “O que é realmente interessante é que a massa desse neutrino estéril é consistente com o que foi observado pelos outros experimentos”, aponta Formaggio.

E, coincidentemente, outro estudo apoiando a ideia de neutrinos estéreis e massas maiores para essas partículas também foi produzido. Esse trabalho, conduzido por Mark Wyman da University of Chicago, também examinou tensões entre os dados do Planck e aglomerados galácticos, e chegou a conclusões semelhantes às de Battye e Moss.
Durante muitos anos acreditou-se que neutrinos não tinham massa nenhuma, mas a descoberta de que eles podem trocar de sabor também provou que eles têm pelo menos um pouquinho de massa.
Acredita-se que o estado de cada sabor seja uma mistura das três massas desconhecidas dos neutrinos e é por causa dessa mistura que qualquer sabor tem uma chance de se transformar em um dos outros com o passar do tempo.
A transformação só é possível se os estados de massa forem diferentes uns dos outros, e essa diferença só é possível se a massa dos neutrinos for diferente de zero, explica Formaggio.
Experimentos que tentam capturar neutrinos durante sua mudança de sabor poderiam ajudar a localizar as diferenças entre as massas dos neutrinos e nos dizer qual deles pesa mais, a chamada “hierarquia de massa de neutrinos”.
Um desses experimentos, chamado de NuMI Off-Axis νeAppearance (NOvA), registrou seus primeiros neutrinos na semana passada.
O experimento cria um feixe de neutrinos no Acelerador do Laboratório Nacional Fermi, perto de Chicago, e os envia para dois detectores, um perto do Fermilab e outro a 800 km de distância, em Ash River, no estado de  Minnesota. Todas as partículas começam como neutrinos de múon mas, em eventos raros, alguns deles chegam ao detector distante após se transformarem em neutrinos de elétron, que criam uma assinatura diferente. A frequência com que isso acontece está relacionada com a diferença entre as massas dos neutrinos de múon e de elétron.
Outro experimento, realizado no Japão, chamado de projeto Tokai to Kamioka (T2K) também procura essas transformações. A equipe anunciou na semana passada ter observado uma quantidade recorde de 28 candidatos a mutações de neutrinos de múon em neutrinos de elétron, e a previsão é que apenas cinco desses eventos sejam outros processos disfarçados.
Essa é a evidência mais forte até o momento para esse tipo de oscilação de neutrino, ainda que muito mais dados sejam necessários para responder perguntas a respeito das massas dessas partículas. “Isso é uma espécie de marco de percurso em uma corrida muito longa”, compara Formaggio. Os dois experimentos são complementares, explica Rick Tesarek, vice-líder de projeto do NovA. “O NovA têm algumas capacidades que o T2K não têm” e vice-versa. Os experimentos usam tecnologias diferentes de detecção que são sensíveis a efeitos diferentes, e o projeto NovA tem uma distância maior entre seu feixe de neutrinos e os detectores mais afastados.
Conforme esses experimentos coletam mais dados, os segredos das massas dos neutrinos podem ser revelados.
Os próximos anos também devem mostrar se as medidas de aglomerados galácticos realmente são incompatíveis com os dados da radiação cósmica de fundo, e assim esclarecer se esses dados indicam massas maiores de neutrinos e/ou um neutrino estéril. “As medidas melhoram o tempo todo”, observa Battye. “Eu imagino que em cinco anos nós saberemos se isso está certo ou não”.

O novo estudo foi publicado na edição de fevereiro no periódico Physical Review Letters.

Fonte: Scientific American

Novo dispositivo solar para gerar eletricidade

Paineis solares estão se tornando cada vez mais comuns. Esses dispositivos são criados com células fotovoltaicas, que absorvem os fótons da luz solar e energizam elétrons no material da célula, criando eletricidade.

dispositivo solar termofotovoltaico

© MIT (dispositivo solar termofotovoltaico)

Imagem do dispositivo em funcionamento. A brilhante faixa laranja é o cristal fotônico, aquecido pela luz solar concentrada e emitindo fótons para a célula fotovoltaica abaixo.

Atualmente, porém, a eficiência máxima de células fotovoltaicas comerciais é de aproximadamente 20%. Essa baixa eficiência vem do fato de que apenas fótons com uma certa quantidade de energia, ou seja, apenas parte do espectro solar, conseguem transferir energia suficiente para os elétrons formarem uma corrente; na prática, os outros fótons são desperdiçados.
A luz solar pode ser convertida em energia térmica, que por sua vez também pode ser usada para gerar eletricidade. A vantagem é que nenhuma parte do espectro é desperdiçada; todas podem ser convertidas em calor. Mas gerar eletricidade a partir de energia térmica solar normalmente requer um sistema de grande escala, com um arranjo de espelhos que refletem e concentram a luz do Sol em tanques ou canos cheios de água ou outros líquidos. O fluido aquecido normalmente é usado para produzir vapor, que gira uma turbina, gerando eletricidade. Ainda que a eficiência desses sistemas seja maior que a de células fotovoltaicas, cerca de 30% em alguns casos, eles não podem ser reduzidos para serem instalados no seu telhado.  
Para superar os vários obstáculos de sistemas solares térmicos e fotovoltaicos, uma equipe de pesquisadores do Instituto de Tecnologia de Massachusetts (MIT) criou um novo dispositivo que combina os elementos dos dois. Essa invenção é conhecida como “dispositivo solar termofotovoltaico”.
Ainda que outros pesquisadores tenham desenvolvido dispositivos desse tipo no passado, a nova criação é a mais eficiente até o momento, de acordo com Evelyn Wang, professora associada de engenharia mecânica do MIT. Mas apesar do avanço, o dispositivo só atinge uma eficiência de 3%.

Mesmo assim, a conquista é notável. Há dois anos, Alejandro Datas, pesquisador da Instituto de Energia Solar da Universidade Politécnica de Madrid, que não se envolveu no estudo, construiu um dispositivo termofotovoltaico que alcançou 1% de eficiência. Ele aponta que triplicar essa eficiência em tão pouco tempo é algo significativo.
Para construir seu dispositivo, os cientistas do MIT usaram nanotubos de carbono, que absorvem luz solar com extrema eficiência; eles se aproximaram do teórico “corpo negro”, que absorve 100% da luz que os atinge.

Os cientistas usaram luz solar concentrada no absorvedor de carbono, elevando sua temperatura a aproximadamente mil graus Celsius. O absorvedor fica anexado a um cristal fotônico, composto de um conjunto de camadas de silício e dióxido de silício, que começa a brilhar em temperaturas tão altas. O cristal brilhante emite fótons, que viajam até a célula fotovoltaica subjacente. Mas ao contrário da luz solar comum, a maior parte dos fótons emitidos pelo cristal tem energia suficiente para fazer com que os elétrons gerem uma corrente elétrica. Ao converter a luz solar em calor, e depois reconvertê-la em luz, o dispositivo ajusta a energia dos fótons absorvidos pela célula fotovoltaica, maximizando seu potencial para gerar eletricidade.
Como os nanotubos de carbono absorvem a luz solar com tanta eficiência, eles não desperdiçam nenhuma parte do espectro, convertendo quase todo ele em energia térmica.
Wang explica que como a luz do Sol também é transformada em calor, essa energia pode ser armazenada com mais facilidade que a eletricidade direta produzida por células fotovoltaicas. A energia pode ser armazenada usando meios térmicos ou químicos, isso pode ser feito com a utilização de compostos químicos como sal derretido que se liquefaz quando aquecido, e em seguida libera o calor absorvido quando volta a se solidificar.
Andrej Lenert, alundo de doutorado do MIT, aponta que “a qualquer momento em que se passa por esse processo de conversão térmica, abre-se a possibilidade de armazenar essa energia na forma de calor”. Essa capacidade permite que a energia solar armazenada na forma de calor seja convertida em eletricidade no futuro, seja à noite ou quando o Sol estiver coberto. Armazenar a eletricidade de células fotovoltaicas convencionais exige baterias, que não são práticas na escala de telhados, e que têm alto custo em escalas maiores.
Além do aumento na eficiência, Lenert acredita que o trabalho de sua equipe servirá como referência para avanços futuros na área da termofotovoltaica solar. “Acredito que os procedimentos experimentais e as metodologias que estabelecemos beneficiarão o avanço da comunidade”, declara ele.
Esse grande avanço, é claro, será superar a marca de 20% de eficiência estabelecida por células fotovoltaicas.
Wang acredita que a equipe está no caminho certo. Parte do problema, de acordo com ela, é a escala. O dispositivo que eles construíram tem o tamanho de uma unha; como a área é pequena em relação ao comprimento das extremidades, perde-se mais calor por meio da inevitável dissipação. O aumento do tamanho resultará em um aumento exponencial da área em relação ao comprimento, reduzindo a perda de calor. “Se pudermos aumentar a escala, conseguiremos superar a eficiência de 20%”, conclui ela.

Fonte: Nature Nanotechnology

sábado, 15 de fevereiro de 2014

Experimento NOvA vê os primeiros neutrinos

Cientistas do experimento NOvA anunciaram que foram captados os seus primeiros neutrinos.

aglomerado de galáxias RDCS 1252.9-2927

© ESO/P.Rosati (aglomerado de galáxias RDCS 1252.9-2927)

O experimento NOvA [NuMI (Neutrinos at the Main Injector) Off-Axis νe Appearance] é composto por dois grandes detectores de partículas situados a 500 quilômetros de distância, e seu trabalho é explorar as propriedades de um intenso feixe de partículas fantasmagóricas chamadas neutrinos. Os neutrinos são abundantes na natureza, mas eles raramente interagem com outra matéria. Estudá-los pode render informações cruciais sobre os primeiros momentos do Universo.

Diferentes tipos de neutrinos têm massas diferentes, mas os cientistas não sabem como essas massas se diferem um do outro. O objetivo do experimento NOvA é determinar a ordem das massas dos neutrinos, conhecida como a hierarquia de massa, que vai ajudar os cientistas a estreitar sua lista de possíveis teorias sobre a função dos neutrinos.
Bilhões dessas partículas são enviadas à Terra a cada dois segundos, atingindo os detectores de massa. Uma vez que a experiência é totalmente operacional, os cientistas vão identificar poucos deles a cada dia.

Os neutrinos são partículas curiosas. Elas têm três tipos, chamados de sabores, e mudam entre eles quando eles viajam. Os dois detectores do experimento NOvA estão colocados tão distantes para propiciar aos neutrinos o tempo de oscilar de um sabor para outro durante a viagem, quase à velocidade da luz.

Os cientistas geraram um feixe de partículas para o experimento NOvA usando um dos maiores aceleradores do mundo, localizado no Departamento de Energia do Fermi National Accelerator Laboratory, em Chicago. O feixe está direcionado para os dois detectores de partículas, um perto da fonte do Fermilab e o outro no rio Ash, em Minnesota, perto da fronteira com o Canadá. O detector no rio Ash é operado pela Universidade de Minnesota sob um acordo de cooperação com o Departamento de Energia.

Depois de concluído, os detectores próximos e distantes do NOvA vai pesar entre 300 e 14.000 toneladas, respectivamente.

"Os primeiros neutrinos significa que nós estamos no nosso caminho", disse o físico Gary Feldman da Universidade Harvard que participa do experimento desde o início. "Começamos a mais de 10 anos atrás a elaboração da criação desta experiência, por isso estamos ansiosos para obter resultados."

A colaboração NOvA é composta por 208 cientistas de 38 instituições nos Estados Unidos, Brasil, República Checa, Grécia, Índia, Rússia e Reino Unido. O experimento NOvA está programado para ser executado por seis anos.

Dedido o fato de os neutrinos interagirem com a matéria tão raramente, os cientistas esperam capturar apenas cerca de 5.000 neutrinos ou antineutrinos durante esse tempo. Os cientistas podem estudar o momento, a direção e a energia das partículas que interagem em seus detectores para determinar se eles vieram do Fermilab ou de outro lugar.

O Fermilab cria um feixe de neutrinos por colisão de prótons em um alvo de grafite, que libera uma variedade de partículas. São utilizados ímãs para orientar as partículas carregadas que emergem a partir da energia de colisão num feixe. Algumas dessas partículas decaem em neutrinos, e após são filtrados os não-neutrinos do feixe.

A imagem no topo mostra o aglomerado de galáxias RDCS 1252.9-2927 no Universo primordial, que se situa a cerca de 8,5 bilhões de anos-luz. Ele existia no momento em que o Universo tinha menos de 5 bilhões de anos. A imagem colorida composta do aglomerado de galáxias mostra a luz em raio X (roxo) a partir do gás com temperatura de 70 milhões de graus Celsius, e no óptico (vermelho, amarelo e verde) a luz das galáxias no aglomerado. Dados de raios X do Chandra e do XMM-Newton mostram que este aglomerado foi totalmente formado a mais de 8 bilhões de anos atrás. A massa medida de mais de 200 trilhões de sóis torna este aglomerado de galáxias o objeto de maior massa já encontrado quando o Universo era muito jovem. A abundância que os aglomerados cde galáxias apresentam são consistentes com a ideia de que a maioria dos elementos pesados ​​foram sintetizados no início da formação de estrelas de grande massa, mas as teorias atuais sugerem que um grupo tão grande deve ser raro no Universo primitivo.

Fonte: Fermi National Accelerator Laboratory