sábado, 15 de fevereiro de 2014

Experimento NOvA vê os primeiros neutrinos

Cientistas do experimento NOvA anunciaram que foram captados os seus primeiros neutrinos.

aglomerado de galáxias RDCS 1252.9-2927

© ESO/P.Rosati (aglomerado de galáxias RDCS 1252.9-2927)

O experimento NOvA [NuMI (Neutrinos at the Main Injector) Off-Axis νe Appearance] é composto por dois grandes detectores de partículas situados a 500 quilômetros de distância, e seu trabalho é explorar as propriedades de um intenso feixe de partículas fantasmagóricas chamadas neutrinos. Os neutrinos são abundantes na natureza, mas eles raramente interagem com outra matéria. Estudá-los pode render informações cruciais sobre os primeiros momentos do Universo.

Diferentes tipos de neutrinos têm massas diferentes, mas os cientistas não sabem como essas massas se diferem um do outro. O objetivo do experimento NOvA é determinar a ordem das massas dos neutrinos, conhecida como a hierarquia de massa, que vai ajudar os cientistas a estreitar sua lista de possíveis teorias sobre a função dos neutrinos.
Bilhões dessas partículas são enviadas à Terra a cada dois segundos, atingindo os detectores de massa. Uma vez que a experiência é totalmente operacional, os cientistas vão identificar poucos deles a cada dia.

Os neutrinos são partículas curiosas. Elas têm três tipos, chamados de sabores, e mudam entre eles quando eles viajam. Os dois detectores do experimento NOvA estão colocados tão distantes para propiciar aos neutrinos o tempo de oscilar de um sabor para outro durante a viagem, quase à velocidade da luz.

Os cientistas geraram um feixe de partículas para o experimento NOvA usando um dos maiores aceleradores do mundo, localizado no Departamento de Energia do Fermi National Accelerator Laboratory, em Chicago. O feixe está direcionado para os dois detectores de partículas, um perto da fonte do Fermilab e o outro no rio Ash, em Minnesota, perto da fronteira com o Canadá. O detector no rio Ash é operado pela Universidade de Minnesota sob um acordo de cooperação com o Departamento de Energia.

Depois de concluído, os detectores próximos e distantes do NOvA vai pesar entre 300 e 14.000 toneladas, respectivamente.

"Os primeiros neutrinos significa que nós estamos no nosso caminho", disse o físico Gary Feldman da Universidade Harvard que participa do experimento desde o início. "Começamos a mais de 10 anos atrás a elaboração da criação desta experiência, por isso estamos ansiosos para obter resultados."

A colaboração NOvA é composta por 208 cientistas de 38 instituições nos Estados Unidos, Brasil, República Checa, Grécia, Índia, Rússia e Reino Unido. O experimento NOvA está programado para ser executado por seis anos.

Dedido o fato de os neutrinos interagirem com a matéria tão raramente, os cientistas esperam capturar apenas cerca de 5.000 neutrinos ou antineutrinos durante esse tempo. Os cientistas podem estudar o momento, a direção e a energia das partículas que interagem em seus detectores para determinar se eles vieram do Fermilab ou de outro lugar.

O Fermilab cria um feixe de neutrinos por colisão de prótons em um alvo de grafite, que libera uma variedade de partículas. São utilizados ímãs para orientar as partículas carregadas que emergem a partir da energia de colisão num feixe. Algumas dessas partículas decaem em neutrinos, e após são filtrados os não-neutrinos do feixe.

A imagem no topo mostra o aglomerado de galáxias RDCS 1252.9-2927 no Universo primordial, que se situa a cerca de 8,5 bilhões de anos-luz. Ele existia no momento em que o Universo tinha menos de 5 bilhões de anos. A imagem colorida composta do aglomerado de galáxias mostra a luz em raio X (roxo) a partir do gás com temperatura de 70 milhões de graus Celsius, e no óptico (vermelho, amarelo e verde) a luz das galáxias no aglomerado. Dados de raios X do Chandra e do XMM-Newton mostram que este aglomerado foi totalmente formado a mais de 8 bilhões de anos atrás. A massa medida de mais de 200 trilhões de sóis torna este aglomerado de galáxias o objeto de maior massa já encontrado quando o Universo era muito jovem. A abundância que os aglomerados cde galáxias apresentam são consistentes com a ideia de que a maioria dos elementos pesados ​​foram sintetizados no início da formação de estrelas de grande massa, mas as teorias atuais sugerem que um grupo tão grande deve ser raro no Universo primitivo.

Fonte: Fermi National Accelerator Laboratory

sexta-feira, 14 de fevereiro de 2014

Avanço nas pesquisas sobre fusão nuclear

Cientistas anunciaram esta semana um importante avanço na longa busca do desenvolvimento da fusão nuclear, o que para alguns representa o sonho de uma fonte de energia limpa e ilimitada.

cápsula que contém combustível para a fusão nuclear

© LLN (cápsula que contém combustível para a fusão nuclear)

Presente no Sol e em muitas outras estrelas, a fusão implica na liberação de energia por meio da união de núcleos atômicos, diferentemente da provocada pela fissão nuclear, princípio físico da bomba atômica e da energia nuclear usada atualmente nas usinas, que envolve a quebra do núcleo dos átomos.

Décadas de trabalho sobre a fusão tentaram superar um obstáculo gigantesco: a enorme quantidade de energia necessária para desencadear o processo. No entanto, experiências de laboratório, descritas atualmente por um grupo de cientistas nos Estados Unidos, permitiram fazer grandes avanços na superação desses obstáculos.

Os cientistas americanos afirmaram ter sido os primeiros a obter mais energia de uma reação de fusão do que a absorvida pelo combustível usado para provocá-la.

Eles fixaram 192 feixes de laser na direção de um ponto mais estreito do que a largura de um cabelo humano para gerar energia suficiente para comprimir uma minúscula cápsula de combustível a um tamanho 35 vezes menor que o original.

Com duração de menos de um bilionésimo de segundo, a reação liberou energia equivalente à armazenada em duas baterias AA (17 mil Joules) na última experiência realizada em novembro de 2013.

Apesar de modesta, a liberação de energia foi maior do que a energia absorvida pelo combustível, estimada entre 9 mil e 12 mil Joules.

"Isto é o mais próximo que se chegou" do sonho de gerar energia viável resultante de uma fusão, disse Omar Hurricane, chefe da equipe que realizou o estudo na estatal National Ignition Facility (NIF), da Califórnia.

A energia é dez vezes superior à alcançada anteriormente, embora haja alguns obstáculos. Não se trata de uma reação sustentada, o tão buscado momento de "ignição", e a pergunta sobre a eficiência energética, ou seja, a liberação de uma energia superior à consumida para lançar o processo, permanece sem resposta.

Neste caso, os feixes de laser liberaram 1,9 milhão de Joules de energia, o equivalente a uma pequena bateria de carro, dos quais só entre 9 mil e 12 mil Joules foram absorvidos pelo combustível.

"Só algo da ordem de 1% da energia que usamos com o laser termina no combustível, ou até menos", disse a co-autora do estudo, Debbie Callahan. "Há muito espaço para continuarmos avançando", prosseguiu.

O método precisa ser aperfeiçoado e o rendimento deve ser 100 vezes melhor "antes de que possamos chegar ao ponto de ignição", acrescentou Hurricane.

A ignição também requer auto-propagação, por meio da qual as primeiras partículas fundidas causam o calor e a pressão necessários para gerar outras, criando assim novas partículas e melhorando o rendimento.

Os últimos experimentos no NIF, um feito em setembro do ano passado e o outro em novembro, foram os primeiros a lançar provas de que as partículas deixam um pouco de energia atrás delas.

A fusão nuclear é o oposto da fissão, que apresenta como riscos a proliferação nuclear, assim como os rejeitos perigosos e duradouros.

Os núcleos de deutério e trítio, ambos isótopos obtidos a partir do hidrogênio, podem, ao contrário, se fundir para criar partículas mais pesadas.

Em teoria, a energia gerada através da fusão não resultaria em rejeitos perigosos nem contaminaria a atmosfera. Além disso, o combustível é encontrado com maior abundância: na água do mar, que cobre mais de dois terços do planeta.

O procedimento requer temperaturas extremas e pressões equivalentes às encontradas no nosso Sol e em outras estrelas ativas.

Para concretizar este objetivo, Hurricane e sua equipe dispararam seus raios laser contra um cilindro de ouro de dois milímetros de diâmetro, recoberto por dentro por uma camada congelada de combustível de deutério e trítio.

Os feixes de luz entraram através de buracos por um lado e se focaram como raios que impactaram a cobertura externa da cápsula e provocaram sua implosão, algo equivalente a reduzir uma bola de beisebol ao tamanho de uma ervilha.

O processo gera uma pressão 150 bilhões de vezes superior à exercida pela atmosfera terrestre e uma densidade de 2,5 a 3 vezes superior à do núcleo solar, disseram os cientistas. Segundo o cientista especializado Mark Herrmann, do Pulsed Power Sciences Center, de Albuquerque, trata-se de "um avanço significativo na pesquisa sobre a fusão".

Fonte: Nature

terça-feira, 4 de fevereiro de 2014

Monopolos magneticos sintéticos são gerados

Um análogo de uma partícula compreendendo um pólo magnético isolado tem sido observada por físicos nos EUA e Finlândia.

ilustração de um monopolo magnético sintético

© Heikka Valja (ilustração de um monopolo magnético sintético)

Os monopolos magnéticos foram previstos por Paul Dirac em 1931, mas nunca foram vistos na natureza. Este último trabalho não prova a existência das partículas incomuns, mas mostra que um sistema físico descrito por uma matemática subjacente pode ser criado em laboratório. A pesquisa também pode ajudar os físicos a obter uma melhor compreensão de materiais exóticos, como supercondutores, e até mesmo criar materiais com propriedades novas e úteis.
Os pólos magnéticos são sempre visto em pares, não importa quão pequeno é o ímã. Um ímã de barra comum consiste de um pólo norte e um pólo sul; se o ímã é cortado em dois, em seguida, cada uma das metades resultantes também será bipolar. Na verdade, não importa quantas vezes o ímã é dividido, os pólos norte e sul permanecem acoplados, inclusive em átomos individuais, que agem como minúsculos ímãs. Isso se reflete nas equações de Maxwell, que dizem que cargas elétricas positivas e negativas isoladas existem, mas as cargas magnéticas isoladas não ocorrem na natureza.
Isso mudou quando a mecânica quântica foi formulada no início do século 20. Paul Dirac mostrou que para ocorrer naturalmente monopolos magnéticos exigiria carga elétrica em unidades discretas. Esta singularidade é visto na natureza, mas não é totalmente compreendida, e a busca de monopolos magnéticos é um campo ativo de pesquisa.
Até agora, os físicos têm tentado criar monopolos dentro de aceleradores de partículas, mas a massa do monopolo é geralmente considerada muito alta para permitir uma observação, mesmo a do Large Hadron Collider (LHC) do CERN. Outra opção era procurar ambientes imaculados, como a Lua ou na gélida Antártida, para encontrar sinais dos monopolos que as teorias da grande unificação predizem deveria ter sido criado quando o Universo esfriou e sua simetria inicial foi quebrada. Aqui também, no entanto, os pesquisadores vêm-se de mãos vazias.
A abordagem de David Hall e seus colegas no Amherst College, em Massachusetts e colaboradores da Universidade de Aalto, na Finlândia é a produção de um análogo do que é conhecido como um "monopolo de Dirac", a forma da mecânica quântica generalizada de um monopolo magnético apresentada por Dirac. Antes de 1931, ninguém tinha sido capaz de combinar eletromagnetismo e mecânica quântica clássica para permitir a existência de monopolos magnéticos, mas Dirac foi capaz de fazer isso por considerar o que acontece quando um monopolo interage com um elétron. Ele descobriu que quando um monopolo passa por uma nuvem de elétrons - a distribuição no espaço de um único elétron , como descrito pela mecânica quântica - deixa um vórtice em seu rastro, é como o escoamento da água que flui pelo ralo.
O grupo de Hall que reproduziu um vórtice em um condensado de Bose-Einstein de átomos de rubídio ultra frios. O condensado é uma onda de matéria única e permanece na nuvem de elétrons de acordo com formulação de Dirac. Para reproduzir o monopolo, os pesquisadores aplicaram um campo magnético no condensado para orientar os átomos constituintes de tal maneira que foi criado um campo magnético "sintético"no interior do condensado. Existe uma correspondência entre esse domínio sintético e o campo que seria produzido por um monopolo magnético. "Você pode obter exatamente as mesmas linhas no campo sintético e o local do monopolo onde essas linhas de campo brotam", diz Hall.
Para mostrar que eles realmente tinham produzido um monopolo de Dirac, os pesquisadores injetou um feixe de laser através do condensado. O feixe criou uma radiografia, onde a sombra projetada pelos átomos da amostra foi perfurada por uma estreita faixa de luz. Isso foi o vórtice criado por um pólo norte isolado (sendo norte ao invés de sul simplesmente por razões técnicas). Normalmente um vórtice criado dentro de um condensado de Bose-Einstein vai de um lado do condensado para outro.

Peter Holdsworth, um físico da matéria condensada na Ecole Normale Supérieure de Lyon, elogia o trabalho como "uma aplicação requintada da nanotecnologia, átomos frios, computação de alta potência e teoria inteligente". Ele ressalta que a equipe não provou a existência de monopolos magnéticos, mas forneceu a confirmação experimental da matemática de Dirac. "É um resultado importante e poderia levar a muitos outros resultados análogo ", diz ele.

Isso vai ajudar os físicos de partículas encontrar monopolos reais? Provavelmente não, mas deverá incentivá-los a continuar a procurando.
Hall reconhece os limites do trabalho de seu grupo. "Nossos monopolos não seria registrado por uma bússola. Nós não temos sido capazes de reproduzir as propriedades como a massa da partícula em nosso experimento, mas criamos um análogo da parte magnética. Isso pode fornecer algumas dicas sobre monopolos naturais", diz ele.

Ele argumenta que seu grupo chegou mais perto de imitar supostos monopolos magnéticos naturais do que outros três grupos que relataram resultados em materiais conhecidos como spin gelados em 2009. Em trabalho anterior, as coleções em forma de tetraedros de íons que compõem spin gelados foram observados sob certas condições para a aquisição de giro líquido, de modo que se assemelha tanto ao norte isolado ou pólo sul. Hall descreve estas experiências interessantes, mas sustenta que a conexão com monopolos de Dirac era bastante fraca e o fenômeno em questão era puramente clássico, em oposição ao quântico.
Este trabalho pode ajudar os físicos a realizar simulações quânticas da matéria. Este campo de rápido crescimento tem como objetivo compreender os materiais existentes e, finalmente, criar novos, talvez até mesmo supercondutores a temperatura ambiente.

Um artigo sobre a pesquisa foi publicado na revista Nature.

Fonte: Physics World

segunda-feira, 3 de fevereiro de 2014

O mistério das bolas de fogo

Relâmpagos bola tem sido um dos fenômenos naturais mais misteriosos durante séculos, em parte porque é tão raro e transitório e, portanto, difícil de investigar.

relãmpago bola

© J. Cen, P. Yuan e S. Xue (relãmpago bola)

O raio bola é o ponto branco na extremidade esquerda, e seu espectro de forma irregular é a banda colorida. Mas uma observação fortuita durante experimentos de campo na China para estudar relâmpago comum, forneceu o que parece ser a primeira medição do espectro de emissão de raios globulares. Os dados sugerem que a bola brilhante foi composta de elementos de solo, de acordo com uma teoria popular.

Relâmpagos bola normalmente aparece durante as tempestades como um brilho, que vão desde o tamanho de uma bola de golfe a vários metros de diâmetro, que flutua no ar por entre um segundo e dezenas de segundos. Há muitos relatos históricos de tais "bolas de fogo" ferindo ou até mesmo matando pessoas e provocando incêndio em edifícios, conduzindo às explicações sobrenaturais.

As teorias científicas de relâmpagos bola abundam, com diferentes graus de plausibilidade. As bolas de plasma brilhantes foram criadas artificialmente pela passagem de micro-ondas intensas através do ar ou por descargas elétricas subaquáticas. Mas tais experiências de laboratório não podem ostentar qualquer relação com a formação de raios bola no meio ambiente, que se sabe muito pouco, uma vez que não houve quase nenhum dado sólido.

Uma teoria popular é que o raio bola é causado quando um raio atinge o solo e evapora alguns dos silicatos minerais no solo. O carbono no solo retira os silicatos de oxigênio através de reações químicas, criando um gás de átomos de silício energético. Os átomos se recombinam para formar nanopartículas ou filamentos que, embora ainda flutuando no ar, reagem com o oxigênio, liberando calor e emitindo o brilho. Se é assim, deve-se esperar para ver as linhas de emissão atômica de silício e outros elementos do solo no espectro.

Isso é o que Ping Yuan e colaboradores da Northwest Normal University em Lanzhou, na China, agora relatam. Eles haviam montado espectrômetros no remoto Planalto Qinghai, no noroeste da China para investigar relâmpago comum, que é frequente nesta região. Durante uma tempestade de fim de noite em julho de 2012, eles viram um raio bola aparecer apenas depois de um raio de cerca de 900 metros do seu aparelho e foram capazes de gravar um espectro e imagens de vídeo de alta velocidade da bola .

O brilho registrado tinha cerca de 5 metros de diâmetro, o tamanho real da bola era muito menor e ele mudou de branco para o vermelho durante o tempo que durou. Embora a escuridão impediu os pesquisadores de estimar a altitude da bola, eles viram que a bola deslocou horizontalmente por cerca de 10 metros e subiu cerca de 3 metros. Yuan diz que esta é a primeira vez que um raio bola foi visto sendo criado por um relâmpago nuvem-solo.

Os pesquisadores descobriram que o espectro continha várias linhas de emissão de silício, ferro e cálcio todos os elementos que deverão ser abundante no solo. Seria de esperar também a presença de alumínio, dada a sua abundância em minerais do solo. Mas não foi confirmado, pois não há linhas de emissão de átomos de alumínio neutro dentro da faixa espectral do instrumento (comprimentos de onda de 400 a 1.000 nanômetros). A equipe também usou seus dados de vídeo para traçar a intensidade do raio bola e diâmetro aparente à medida que varia com o tempo, até a escala de tempo de milissegundos. Os pesquisadores planejam simular as condições de observação e reproduzí-la em laboratório.

Fonte: Physical Review Letters

quarta-feira, 15 de janeiro de 2014

Capturando partículas Z em colisor

Em abril de 2013, físicos de partículas fizeram uma inesperada descoberta: uma partícula, chamada Zc(3900), que parece ser composta de quatro quarks ao invés das duas usuais ou três.

partícula Z

© APS/Alan Stonebraker (partícula Zc)

A Colaboração Beijing Spectrometer Detector (BESIII), um dos dois grupos que primeiro detectaram a Zc(3900), agora tem explorado um conjunto separado de reações que podem levar à produção desses estados de quatro quarks. Conforme relatado na Physical Review Letters, eles encontram fortes assinaturas de uma partícula, mas sua massa não é exatamente a da partícula Zc(3900). Independentemente da sua verdadeira identidade, a entidade detectada pode dar um melhor entendimento de como os quatro quarks podem se unir nestas partículas incomuns.

A prova original para a partícula Zc(3900) vem de colisões elétron- pósitron. Com energia de 4,26 GeV (giga-elétron-volts), essas colisões podem produzir uma partícula chamada Y(4260), que decai depois de algum tempo em um méson J/Ψ e dois pions. Nessas cadeias de desintegração, os físicos descobriram evidências de uma outra partícula, a Zc(3900), com uma massa de 3,9 GeV/c2.

Ainda não está claro se a Zc(3900) é uma partícula com quatro quarks ou uma "molécula ", composta de dois estados e dois quarks .

À procura de uma nova visão sobre este problema, o experimento BESIII no Beijing Electron Positron Collider analisou uma rota diferente do decaimento da Y(4260), o que resulta em um par de mésons D e um pion. Os dados mostraram um pico numa energia específica, o que implica na criação de uma partícula com uma massa de 3,885 GeV/c2. A discrepância em massa com a Zc(3900) é pequena, mas a significância observada é 2 sigma, de modo que os pesquisadores se absteram de identificar a sua partícula com semo a Zc(3900). No entanto, eles mediram o momento total angular e paridade de sua partícula, o que poderia ajudar a discriminar esta partícula de outras potenciais partículas de quatro quarks na mesma faixa de massa.

Fonte: Physical Review Letters

domingo, 12 de janeiro de 2014

Turbulência ao redor de um buraco negro

Pesquisadores utilizaram uma relação entre a relatividade geral e hidrodinâmica, a chamada correspondência gravidade-fluido, para estudar como os buracos negros podem se comportar quando perturbado, por exemplo, por uma colisão com outro objeto.

ilustração da turbulência em buraco negro

© S. R. Green (ilustração da turbulência em buraco negro)

Os efeitos da turbulência pode provocar certas vibrações ao longo do espaço-tempo do buraco negro e exibir um comportamento qualitativamente diferente do que o esperado.

A correspondência gravidade-fluido é baseada na constatação de que, em certas circunstâncias, as equações da relatividade geral de Einstein se assemelham as equações de Navier-Stokes para dinâmica de fluidos. Normalmente, altera-se parâmetros da gravidade a fim de obter informações sobre algum problema difícil do lado do fluido. Por exemplo, o trabalho recente tem tentado descrever o movimento turbulento de partículas de fluido, mapeando-o para uma geometria do espaço-tempo curvo.

O físico Stephen Green, da Universidade de Guelph, no Canadá, e seus colegas investigaram a correspondência da gravidade-fluido de outra maneira, tentando entender perturbações no buraco negro através de um estudo de turbulência de fluidos, através do número de Reynolds. Eles consideraram um fluido bidimensional, cujas oscilações de velocidade correspondem às vibrações na superfície do buraco negro. A viscosidade do fluido caracteriza a perda de energia para o buraco negro, o que faz com que as perturbações decaiam. Ao contrário de trabalhos anteriores, a equipe analisou as consequências a longo prazo da turbulência na gravidade e descobriu que, em certos casos, um buraco negro pode desenvolver turbulências, tais como vórtices giratórios de ondas gravitacionais.

Esta turbulência no buraco negro prolonga a perturbação, onde os modos de longo comprimento de onda tem decaimento mais lento, fazendo com que esta transferência de energia prolongue a vida útil total da perturbação. Os trabalhos em curso podem nos dizer se a turbulência no buraco negro é observável através, por exemplo, variações nas linhas de emissão de acreção de gás.

Fonte: Physical Review X

sexta-feira, 10 de janeiro de 2014

Gás em degenerescência profunda

O estudo de sistemas quânticos é fascinante, onde os sistemas de partículas que têm diferentes interações microscópicas ainda têm o mesmo comportamento macroscópico.

gás de férmions em degenerescência profunda

© K. Aikawa (gás de férmions em degenerescência profunda)

O físico Kiyotaka Aikawa e colegas da Universidade de Innsbruck, na Áustria, são os primeiros a esfriar um gás de férmions idênticos que apresentam dipolo dispersão universal, neste caso 60.000 átomos de érbio-167 (167Er), a uma fração da temperatura de Fermi. Este sistema de átomos frios poderia ajudar os físicos a entender melhor o comportamento de outros gases dipolares, tais como moléculas frias e, possivelmente, os sistemas de física nuclear.

A imagem mostra a esquerada férmions degenerados com T/Tf = 0,71 e a direita férmions degenerados com T/Tf = 0,47.

O princípio de exclusão de Pauli impede que dois férmions idênticos ocupem o mesmo nível de energia. Como resultado, em temperatura zero, átomos fermiônicos como o 167Er ocuparão uma escada de estados quânticos até a energia de Fermi. Mas a natureza anti-simétrica da função de onda fermiônica impede que átomos idênticos com interações de curto alcance de colidir em baixas temperaturas. Sem colisões para termalização do sistema, o resfriamento evaporativo, uma técnica padrão para o arrefecimento de gases atômicos, torna-se ineficaz.

Os pesquisadores Universidade de Innsbruck contornaram este impasse usando as interações dipolo-dipolo de longo alcance de átomos 167Er altamente magnéticos para resfriamento evaporativo do gás com 0,2 vezes a temperatura de Fermi. Os pesquisadores foram capazes de ver o aparecimento do estado quântico degenerado pela imagem dos momentos dos átomos, e mostrando que eles seguiram uma distribuição de Fermi-Dirac. O grupo também demonstra a natureza universal da seção transversal de espalhamento deste gás. Especificamente, foi mostrado que a taxa de espalhamento entre átomos depende apenas de um único parâmetro chamado comprimento de dipolo, que é proporcional ao produto da massa do átomo e ao quadrado do seu momento de dipolo.

Fonte: Physical Review Letters

quinta-feira, 9 de janeiro de 2014

Ultrapassando os limites da difração

Microscópios ópticos são amplamente utilizados em todas as áreas da ciência para ampliar a imagem de pequenos objetos.

imagem de nanoestrutura

© Tung-Yu Su/NTU (imagem de nanoestrutura)

No entanto, devido ao seu design e os limites de difração, os menores recursos que microscópios convencionais podem imagear são cerca de metade do comprimento de onda da luz que eles usam.

O físico Shi-Wei Chu, da Universidade Nacional da Tailândia, e colegas relataram uma nova técnica que supera esse limite de resolução e pode efetuar imagens de nanoestruturas, da ordem de 70 nanômetros de tamanho, inferior a um oitavo do comprimento de onda da luz visível usada em sua configuração.

O grupo montou um microscópio óptico comum com um laser e utilizou uma amostra contendo nanopartículas de ouro. O comprimento de onda do laser foi escolhido de modo que ficasse em ressonância com as partículas plasmônicas. Como consequência, a luz laser apresentou particularmente forte dispersão. Ao ajustar a intensidade do laser, os pesquisadores foram capazes de alcançar, pela primeira vez, um regime em que a luz dispersou a partir de uma partícula isolada quando foi saturada. Com técnicas de processamento de imagem apropriados, tal comportamento de saturação pode ser explorada para proporcionar imagens mais nítidas das nanoestruturas plasmônicas.

Enquanto este método apenas funciona para as nanopartículas de ouro, partículas podem ser incorporadas seletivamente de outros materiais. Embora outras técnicas recentemente demonstradas, principalmente com base em microscopia de fluorescência, permitem resolução comparável ou até melhor, este método com nanopartículas de ouro tem uma vantagem importante: as amostras podem ser fotografadas várias vezes sem danos e sem perda de intensidade de espalhamento que, nos regimes baseados em fluorescência, inevitavelmente ocorrem por causa do branqueamento das moléculas fluorescentes.

Fonte: Physical Review Letters

domingo, 24 de novembro de 2013

Encontrados neutrinos oriundos do espaço

Durante décadas, os cientistas têm procurado por neutrinos vindos do espaço exterior, e agora finalmente foram encontradas.

neutrinos de alta energia

© IceCube Collaboration (neutrinos de alta energia)

Os neutrinos são partículas subatômicas sem carga e com muito pouca massa.

Usando o observatório de neutrinos IceCube (South Pole Neutrino Observatory), na Antártida, os pesquisadores descobriram a primeira evidência de neutrinos provenientes de fora do Sistema Solar desde 1987. Os resultados propiciam uma nova era da astronomia que poderia revelar segredos dos fenômenos mais estranhos do Universo.

No século passado, os cientistas ponderaram a fonte dos raios cósmicos, que contêm a energia de uma bala de rifle em um único núcleo atômico. Acredita-se que objetos como supernovas, buracos negros pulsares, núcleos ativos de galáxias e explosões de raios gama produzem raios cósmicos, mas sua origem é difícil de detectar. Em vez disso, foram procurados neutrinos produzidos quando os raios cósmicos interagem com seus ambientes. Trilhões de neutrinos atravessem seu corpo a cada segundo, e apenas uma pequena fração deles interage com a matéria.

IceCube

© Sven Lidstrom (IceCube)

O IceCube está localizado dentro de um quilômetro cúbico de gelo sob o pólo sul. O observatório é constituído por 5.160 módulos ópticos digitais suspensos a partir de 86 cordas, que detectam os minúsculos flashes de luz azul emitidos quando neutrinos interagem com moléculas no gelo, fenômeno conhecido como radiação Cherenkov. Outros 344 módulos compõem o IceTop, um detector complementar instalado na superfície, necessário para filtrar os eventos causados pela interação dos raios cósmicos com a atmosfera terrestre. A maioria dos neutrinos detectados na Terra se originam na atmosfera da Terra ou do Sol.

Mas em abril de 2012, o IceCube detectou dois neutrinos com energia acima de 1 PeV (petaelétron-volt), os primeiros neutrinos definitivamente detectados fora do sistema solar desde 1987, quando aconteceu na supernova 1987A na Grande Nuvem de Magalhães. Os novos eventos são mais de 1 milhão de vezes mais energéticos do que os observados em 1987.

Análises mais aprofundadas revelaram 28 neutrinos de alta energia em dados do IceCube tomadas a partir de maio de 2010 até maio de 2012. Cada evento foi maior do que 30 TeV (teraelétron-volt).

“Temos algumas evidências convincentes de que temos neutrinos provenientes de fora do Sistema Solar”, disse o co-autor Nathan Whitehorn, físico da Universidade de Wisconsin-Madison.

O número de eventos é demasiado pequeno para identificar a origem dos neutrinos, no entanto.

“Nós ainda não temos um número de neutrinos suficiente para determinar sua origem”, disse Uli Katz, físico de partículas da Universidade de Erlangen-Nuremberg, na Alemanha, que não estava envolvido com a pesquisa e que está liderando o projeto de um outro observatório de neutrinos chamado KM3net, que será construído sob o Mar Mediterrâneo.

Fonte: Science

domingo, 3 de novembro de 2013

Experimento não detecta matéria escura

Os primeiros resultados do experimento LUX (Large Underground Xenon) foram nulos, indicando que a matéria escura que se acredita compor uma grande parte do Universo é ainda mais elusiva do que acreditavam muitos especialistas.

o Grande Detector Subterrâneo de Xenônio

© Laboratório Sanford (o Grande Detector Subterrâneo de Xenônio)

Enterrado a cerca de 1,5 km de profundidade em uma mina de ouro reformada na Dakota do Sul, que atualmente é a Instalação de Pesquisa Subterrânea Sanford, o experimento LUX procura sinais de partículas de matéria escura colidindo com os átomos em um tanque de xenônio líquido. Durante seus primeiros três meses de operação o detector não encontrou qualquer tipo de sinal. “Nós procuramos muito por essas partículas de matéria escura e não vimos nada”, declara o físico Rick Gaitskell da Brown University.
Os resultados eliminam várias massas e características possíveis para as partículas que compõem a matéria escura, e também conflita com experimentos anteriores que relataram possíveis sinais de matéria escura.
Cerca de um quarto do Universo parece ser composto de matéria escura, que faz sua presença ser sentida através da gravidade, apesar de não poder ser vista ou tocada. Uma das principais explicações da matéria escura postula que ela é composta de partículas chamadas de WIMPs (Partículas Massivas de Interação Fraca, em inglês). Se existirem, um bilhão dessas WIMPs provavelmente atravessam seu corpo a cada segundo sem que seus átomos percebam. A reticência dessas partículas em interagir com a matéria conhecida apresenta um desafio a físicos que pretendem detectar a matéria escura. Hipóteses sugerem, porém, que em situações muito raras WIMPs devam se chocar com átomos convencionais em vez de passarem pelo espaço entre eles. 
Pesquisadores do LUX esperam captar esses impactos escassos ao medir fótons emitidos por um átomo de xenônio que for atingido por matéria escura. Para reduzir as chances de qualquer outra coisa fazer o xenônio emitir luz, como partículas espaciais carregadas, chamadas de raios cósmicos, o detector fica altamente protegido e enterrado no fundo da mina. Em termos de radioatividade de fundo, os raios cósmicos e outros contaminantes, o centro do tanque do LUX, 368 kg de xenônio líquido resfriado a -150°C, é o lugar mais silencioso do mundo.
O experimento é duas vezes mais sensível a partículas hipotéticas de matéria escura com grandes massas que outros detectores, e é ainda melhor se as partículas de matéria escura forem relativamente leves. O fato de o LUX ainda não ter registrado nenhum impacto desse tipo indica que as partículas no espectro de massa a que ele é sensível, entre 5 e 10 mil vezes a massa de um próton, interagem de maneira extremamente rara com a matéria comum. A massa do próton é cerca de 0,94 GeV, enquanto que a massa do bóson de Higgs é da ordem de 125 GeV.
Os novos resultados do LUX também lançam dúvidas sobre alegações anteriores de possível detecção de matéria escura. O projeto italiano DAMA (DArk MAtter) alegou ter observado sinais de WIMPs há mais de uma década, e mais recentemente o CDMS (Cryogenic Dark Matter Search) e o experimento CoGeNT (Coherent Germanium Neutrino Technology), ambos em Minnesota, observaram alguns eventos que podem ser atribuíveis à matéria escura.

Juan Collar da University of Chicago, que dirige o projeto CoGeNT, declara acreditar que a equipe do LUX não levou adequadamente em conta efeitos de campo elétrico e que, portanto, podem ter subestimado a sensibilidade do detector de xenônio para WIMPs de pouca massa.
Blas Cabrera da Stanford University, que dirige o projeto CDMS, também sustenta que o que seu projeto observou ainda pode ser matéria escura. “É improvável que o LUX tenha descartado toda a região de interesse para WIMPs de pouca massa, porque o xenônio não é tão sensível quanto outros materiais à matéria escura nesse espectro de massa”, aponta ele. (O CDMS usa detectores de silício e de germânio).

A competição é acirrada para descobrir qual será o primeiro experimento a encontrar matéria escura. O LUX é o experimento mais recente em uma série de buscas que estão em andamento há mais de três décadas, e nenhuma delas encontrou evidências conclusivas de matéria escura. O LUX continua a coletar dados, e os pesquisadores já estão planejando um detector de xenônio ainda maior, chamado de LUX-ZEPLIN.

Os cientistas esperam produzir as WIMPs ou outras evidências de "supersimetria" no Grande Colisor de Hádrons (LHC), instalado na Organização Europeia para a Pesquisa Nuclear (CERN), na fronteira da Suíça com a França; hoje, porém, o LHC está fechado para manutenção, o que deve durar até 2015. Até agora, ninguém viu uma única WIMP no espaço ou no subsolo.

Um artigo foi submetido para publicação à Physical Review Letters.

Fonte: Scientific American

domingo, 20 de outubro de 2013

Higgsogênese pode explicar matéria escura

Um enigma fundamental da cosmologia talvez possa ser solucionado pela descoberta do bóson de Higgs, em 2012.

interações bósons-antibósons de Higgs

© CERN (interações bósons-antibósons de Higgs)

Dois físicos sugerem que o Higgs teve um papel crucial no Universo primitivo ao produzir a diferença observada entre o número de partículas de matéria e antimatéria e determinar a densidade da misteriosa matéria escura que compõe cinco sextos da matéria no Universo.
Em um artigo aceito para publicação em Physical Review Letters, Sean Tulin, da University of Michiganem Ann Arbor, e Géraldine Servant, do Instituto Catalão de Pesquisa e Estudos Avançados em Barcelona, na Espanha, afirmam que pode ter havido uma assimetria entre o bóson de Higgs e seu complemento de antimatéria, o antibóson de Higgs, no Universo jovem.
Acredita-se que atualmente o Higgs não tenha uma antipartícula, mas o modelo cosmológico padrão permite a existência tanto de bósons de Higgs quanto de antibósons de Higgs no Universo muito jovem. A proposta de Tulin e Servant é que havia um desequilíbrio no número dessas partículas. Como o Higgs interage com a matéria comum, o desequilíbrio numérico entre as partículas e antipartículas de Higgs pode ter se manifestado através de uma assimetria na quantidade de matéria e antimatéria. “Realmente consideramos o Higgs um elemento-chave, ao passo que em muitas outras teorias cosmológicas ele é tido apenas como um subproduto”, diz Tulin.
Os cientistas apelidaram a ideia de Higgsogênese, nome inspirado na bariogênese, um processo no Universo jovem que, segundo a proposta, teria criado mais bárions (partículas que incluem prótons e nêutrons) que antibárions. “A Higgsogênese é uma alternativa”, sugere Tulin.
Partículas Perdidas
Tulin e Servant mostram que se o Higgs também interagiu com a matéria escura, por exemplo ao gerar partículas de matéria escura quando decai, ele poderia ter produzido uma proporção entre matéria escura e matéria visível exatamente igual à que observamos no Universo atual.
De acordo com Servant, uma consequência dessa forma de interação seria um novo teste em potencial para detectar a matéria escura que até agora provou ser tão difícil de ser observada diretamente.
Quando o Higgs decai e origina outras partículas no Grande Colisor de Hádrons (LHC, na sigla em inglês) no CERN, o laboratório europeu de física de partículas perto de Genebra, na Suíça, ele ocasionalmente forma partículas indetectáveis de matéria escura. Os decaimentos do Higgs no LHC ainda não foram suficientemente bem estudados para sabermos se isso de fato acontece, mas esse estudo pode acontecer futuramente, observa Servant.
Há outros grupos estudando a Higgsogênese.
Em julho, a teórica Sacha Davidson, da Universidade de Lyon, na França, e seus colegas divulgaram um artigo em que examinaram o que seria necessário para produzir a assimetria entre os bósons e antibósons de Higgs para dar início à Higgsogênese no Universo jovem. Eles constataram que uma teoria relativamente simples, em que o modelo padrão da física de partículas inclui todas as partículas normais além de dois Higgs mais uma partícula extra parecida com a de Higgs, porém inobservável, pode produzir uma assimetria do tipo proposto por Servant e Tulin.
Manoj Kaplinghat, um físico teórico da University of California em Irvine, aprecia a proposta dos dois físicos devido à sua simplicidade. “Sabemos que o Higgs existe, sabemos que há uma assimetria entre matéria e antimtéria, e eles estão tentando juntar três fatos empíricos”, explica ele. “É uma abordagem minimalista e é isso que a torna interessante”.

Fonte: Nature

terça-feira, 8 de outubro de 2013

A descoberta do bóson de Higgs ganha Nobel

O belga François Englert e o escocês Peter W. Higgs foram outorgados com o Prêmio Nobel de Física de 2013, pela teoria de como as partículas adquirem massa.

François Englert e Peter Higgs

© AFP (François Englert e Peter Higgs)

Em 1964, eles propuseram a teoria de forma independente um do outro (Englert, juntamente com o seu colega já falecido Robert Brout). A tentativa de Englert era a de usar o conceito de campos, como o campo elétrico e o magnético, para descrever também a maneira com que as partículas adquirem massa. Assim como a força eletromagnética é explicada pela interação com os fótons (partícula da luz), a massa seria explicada pela interação das partículas com uma outra partícula e outro campo. Englert lançou essa ideia, mas Higgs foi o primeiro a falar sobre propriedades dessa partícula, por isso o bóson acabou ganhando seu nome. A diferença entre o campo de Higgs e um campo elétrico é que o primeiro não está circunscrito a um determinado espaço, mas permeia todo o Universo, ou seja é um campo escalar.

Em 2012, estas hipóteses foram confirmadas pela descoberta de uma chamada partícula de Higgs no laboratório CERN perto de Genebra, na Suíça.

A teoria premiada é uma parte central do Modelo Padrão da física de partículas que descreve como o mundo é construído. De acordo com o Modelo Padrão, tudo, desde flores e pessoas até estrelas e planetas, é composto por apenas alguns blocos de construção: partículas de matéria.

Todo o Modelo Padrão também repousa sobre a existência de um tipo especial de partículas: o bóson de Higgs, também conhecido como a "partícula de Deus". Esta partícula se origina de um campo invisível que preenche todo o espaço. Mesmo quando o Universo parece vazio este campo está lá. Sem ela, nós não existiríamos, porque é a partir do contato com o campo que as partículas adquirem massa. A teoria proposta por Englert e Higgs descreve este processo.

Em 4 de julho de 2012, no laboratório de física de partículas do CERN, a teoria foi confirmada pela descoberta de uma partícula de Higgs. O colisor de partículas do CERN, o LHC (Large Hadron Collider), é provavelmente a maior e mais complexa máquina já construída pelo homem. Dois grupos de pesquisa de cerca de 3.000 cientistas cada um, ATLAS e CMS, conseguiram extrair a partícula de Higgs de bilhões de colisões de partículas no LHC.

bóson de Higgs complementa o Modelo Padrão

© Johan Jarnestad (bóson de Higgs complementa o Modelo Padrão)

Mesmo que seja uma grande conquista ter encontrado a partícula de Higgs, a peça que faltava no quebra-cabeça do Modelo Padrão, o Modelo Padrão não é a peça final do quebra-cabeça cósmico. Uma das razões para isso é que o Modelo Padrão trata certas partículas, neutrinos, como sendo praticamente sem massa, enquanto que estudos recentes mostram que eles realmente têm massa. Outra razão é que o modelo descreve apenas a matéria visível, o que representa apenas um quinto de toda a matéria no cosmos. Para encontrar a misteriosa matéria escura é um dos objetivos que os cientistas continuam na perseguição de partículas desconhecidas no CERN.

Higgs agradeceu ao prêmio em um comunicado divulgado pela Universidade de Edimburgo, onde é professor de Física Teórica. "Espero que este reconhecimento da ciência fundamental ajude a aumentar a consciência sobre a importância da pesquisa imaginativa", completou, ao agradecer a Real Academia de Ciências.

Fonte: The Royal Swedish Academy of Sciences

sexta-feira, 4 de outubro de 2013

Novo modelo hipotético para Universo curvo

Vivemos em um Universo inclinado?!

oscilação da radiação cósmica de fundo

© ESA/Planck Collaboration (oscilação da radiação cósmica de fundo)

Foi isso que os cosmólogos concluíram ao examinar a estrutura detalhada da radiação remanescente do Big Bang. Dois cosmólogos acabam de mostrar que os dados são consistentes com um Universo ligeiramente curvo, lembrando o formato de uma sela. Se o modelo estiver correto, a antiga convicção de que o cosmos é plano seria invalidada.
Em uma escala ampla, as medições de precisão da radiação cósmica de fundo (CMB) feitas pela sonda Wilkinson de Anisotropia em Microondas (WMAP) da NASA forneceram os primeiros sinais de uma assimetria em 2004.
Alguns especialistas ponderaram se a descoberta teria sido um erro sistemático que seria corrigido quando a sucessora da sonda da NASA, o satélite Planck da ESA mapeasse a CMB novamente com maior precisão. Mas os resultados do Planck, divulgados em março deste ano, confirmaram a anomalia.
Para explicar esse resultado, Andrew Liddle e Marina Cortês, da University of Edinburgh, no Reino Unido, propuseram um modelo de inflação cósmica, um período hipotético de rápida expansão logo após o Big Bang, em que o Universo expandiu exponencialmente em magnitude numa pequena fração de segundo.
A teoria da inflação cósmica mais simples afirma que o Universo é plano e que sua expansão é impulsionada por um único campo quântico chamado inflaton. Nesse modelo, o inflaton tem duas funções: ele desencadeou uma hiperexpansão e gerou minúsculas flutuações de densidade que se ampliaram e se tornaram sementes de galáxias.
Essa versão, porém, não explica a assimetria do Universo, exceto como uma casualidade estatística, algo parecido com uma chamada “moeda honesta” (em que a probabilidade de dar cara ou coroa é de 50% para as duas) que por acaso resulta em muito mais caras que coroas quando lançada mil vezes. Se as anomalias da CMB não são casuais, elas poderiam oferecer uma janela inédita para a estrutura detalhada dos primórdios do Universo, observa Liddle.
Como muitos teóricos antes deles, os dois pressupõem um segundo campo quântico, o curvaton, para estabelecer as flutuações primordiais de densidade no Universo jovem, restringindo a ação do inflaton apenas à era da hiperexpansão.
Os pesquisadores mostraram que o campo curvaton geraria as flutuações assimétricas de densidade que foram observadas se o espaço tivesse uma curvatura ligeiramente negativa em grandes escalas. Isso significa que se fosse possível “desenhar” grandes triângulos no espaço, a somatória de seus ângulos internos seria inferior a 180º. (Em um Universo plano os ângulos somariam exatamente 180º e em um Universo curvado positivamente a somatória seria mais que 180º.)
O trabalho dos autores é o primeiro a explicar a assimetria por meio do “primeiro princípio” (axioma ou premissa que não pode ser deduzida de qualquer outra proposição), comentou Adrienne Erickcek, uma teórica da University of North Carolinaem Chapel Hillque não participou do estudo.
No cenário de Liddle e Cortês, a assimetria da CMB derivaria de uma falta de uniformidade na megaescala do Universo, codificada no campo curvaton. Em 2008, Erickcek e seus colegas propuseram um mecanismo similar, mas seu modelo não supôs um Universo curvado negativamente.
Embora numerosas observações indiquem que o cosmos de fato é plano, os desvios nos dados da radiação cósmica de fundo previstos pelo modelo mais recente, que os autores admitem ser especulativo, poderiam ser suficientemente pequenos para se encaixar nos limites impostos pelas medições do satélite Planck, explica Liddle. Futuros experimentos com medições mais precisas poderão determinar quem está certo.

Fonte: Physical Review Letters

sábado, 14 de setembro de 2013

A borboleta fractal

Após uma busca de quase 40 anos, os físicos encontraram uma prova experimental para um dos primeiros padrões fractais conhecidos da física quântica: a borboleta de Hofstadter.

a borboleta de Hofstadter

© Douglas Hofstadter (a borboleta de Hofstadter)

Batizada em homenagem a Douglas Hofstadter, autor do livro Gödel, Escher, Bach, de 1979, ganhador do Prêmio Pulitzer, o padrão descreve o comportamento de elétrons em campos magnéticos extremos.
Para capturar a borboleta, os cientistas tiveram que inovar na construção de redes.
Desde maio, vários grupos vêm publicando experimentos que procuraram o padrão usando treliças hexagonais de átomos.
Em agosto, alguns cientistas relataram que estavam tentando captar o padrão com armadilhas de laser atômico. Alguns físicos afirmam que o estudo do padrão poderia ajudar no desenvolvimento de materiais com propriedades elétricas exóticas; mas a principal razão da busca foi verificar se a borboleta de fato tem o aspecto previsto.
“De início, o conceito de Hofstadter foi bastante perturbador para muita gente”, diz Cory Dean, um físico experimental no City College de Nova York. “Agora podemos dizer que sua proposta nem era tão louca assim”.
Hofstadter, que atualmente é um cientista cognitivo na Indiana University em Bloomington, esboçou o padrão nos anos 70 quando era um estudante de pós-graduação em física. Na época já se sabia que elétrons sob a influência de um campo magnético correriam em círculos, mas Hofstadter ponderou que, em teoria, se os elétrons estivessem confinados numa estrutura atômica cristalina, seus movimentos se tornariam complexos.
À medida que o campo magnético fosse incrementado, os níveis de energia que definem o movimento dos elétrons se dividiriam sucessivamente. Quando representados em um gráfico, esses níveis de energia revelaram um padrão que parecia uma borboleta e continuaram a fazer isso mesmo quando reduzidos a escalas infinitamente pequenas.
O matemático Benoît Mandelbrot ainda não tinha popularizado o termo “fractal” para esses padrões recursivos e o mentor de Hofstadter não se convenceu. “Ele desdenhosamente chamou o padrão de aninhamento que o novato alegava ter visto de ‘mera numerologia’”, conta o cientista. “Ele até me disse que eu seria incapaz de obter um PhD para esse tipo de trabalho”. Hofstadter publicou sua descrição da borboleta em 1976 após concluir seu doutorado.
A ideia era difícil de testar.
A força do campo magnético necessário depende do espaçamento entre os átomos na estrutura hexagonal (treliça). Em materiais convencionais, em que os átomos estão separados por menos de um bilionésimo de um metro, o padrão pode surgir somente em campos da ordem de dezenas de milhares de teslas. Os melhores ímãs disponíveis só conseguem chegar a cerca de 100 teslas e apenas por uma fração de segundo.
No entanto, campos menores têm suficientes treliças com espaçamentos maiores, que podem ser criados ao se empilhar materiais em camadas. Em maio, pesquisadores relataram que haviam colocado uma única folha de grafeno, em que os átomos de carbono estão dispostos como os alvéolos de um favo de mel, em cima de uma folha de nitreto de boro hexagonal (também com estrutura de favo).
As camadas criam um padrão repetitivo mais amplo para os campos magnéticos que os hexágonos existentes em cada material, magnificando efetivamente o campo.
Depois de submeterem o material a um campo magnético, os pesquisadores mediram alterações discretas na condutividade dele, com saltos que resultam de mudanças de nível de energia de seus elétrons.
Esses resultados não foram uma detecção direta do comportamento esperado de elétrons, mas uma simulação. 
A borboleta de Hofstadter ainda não tinha sido capturada, mas havia revelado sua existência. “Encontramos um casulo”, diz Pablo Jarillo-Herrero, um físico experimental no Instituto de Tecnologia de Massachusetts (MIT) em Cambridge. “Ninguém duvida de que há uma borboleta lá dentro”.
Wolfgang Ketterle, o Prêmio Nobel de Física de 2001, também do MIT, está “caçando” a borboleta de outro modo, ao fazer com que átomos ajam como elétrons. Para fazer isso, ele congela átomos de rubídio a alguns bilionésimos de grau acima do zero absoluto e usa lasers para prendê-los em uma estrutura com cavidades ou bolsas, como os de embalagens de ovos.
Quando atingidos por um par de lasers entrecruzados extras, os átomos fluem de uma cavidade para outra, como em um túnel. A inclinação da grade permite que a gravidade direcione os átomos para caminhos que imitam os movimentos circulares de um elétron em um campo magnético, embora não haja campos magnéticos reais envolvidos.
O sistema pode monitorar o movimento de átomos individuais facilmente e deveria ser capaz de imitar um campo magnético suficientemente forte para produzir uma borboleta de Hofstadter. “Átomos frios nos darão uma enorme liberdade”, afirma Ketterle.
Mas o arranjo tem um problema: os lasers tendem a aquecer os átomos frios, limitando a capacidade de controlar as energias das partículas e revelar o padrão fractal.
Ainda assim, se o calor puder ser controlado e a borboleta simulada, esse sistema poderia ser um ponto de partida para estudar comportamentos quânticos em sólidos, como materiais que conduzem eletricidade na superfície, mas são isolantes no centro.
Dieter Jaksch, físico da University of Oxford, no Reino Unido, observou: “Espero que uma infinidade de novos fenômenos sejam detectados quando se explorar a borboleta”.

Fonte: Nature

sábado, 7 de setembro de 2013

Matéria pode ter movimento perpétuo?

O físico Frank Wilczek teve que defender suas ideias mais de uma vez durante a sua longa e célebre carreira.

cristal do tempo

© NPL (cristal do tempo)

Diz ele que seu trabalho sobre quarks, os menores blocos de construção da matéria, que lhe rendeu o Prêmio Nobel em 2004, originalmente foi considerado “pouco convencional”.
Ainda assim, Wilczek, atualmente no Instituto de Tecnologia de Massachusetts (MIT) em Cambridge, foi pego de surpresa pela severidade de um ataque à sua mais recente proposta: um tipo de dispositivo em movimento perpétuo, chamado de cristal do tempo. Patrick Bruno, um físico teórico do Laboratório Europeu de Radiação Síncrotron (ESRF, na sigla em inglês), em Grenoble, na França, alega ter demolido a ideia com uma prova matemática publicada em agosto na revista Physical Review Letters.
“Ele está em pé de guerra”, comenta Wilczek que, imperturbável, revidou com um artigo postado em 27 de agosto no servidor de pré-impressão do arXiv na qual ele propõe uma nova forma para executar fisicamente a sua concepção.
Em seu sentido mais básico, o cristal do tempo proposto por Wilczek é qualquer coisa que possa ser observada movendo-se em um padrão que se repita a intervalos regulares ao longo do tempo sem o acréscimo de energia, essencialmente um relógio que funcione para sempre sem precisar de corda. Como os átomos em um cristal comum, que se repetem a intervalos discretos no espaço, a estrutura de um cristal do tempo se repete a intervalos discretos no tempo.
Ao procurar um exemplo para apoiar sua teoria, Wilczek idealizou um anel supercondutor em seu estado de menor energia. Os elétrons podem se mover por um anel desses sem resistência, fluindo em uma corrente perpétua que normalmente é suave e constante ao longo do tempo e, portanto, não tem uma referência (pontuação) observável para a passagem do tempo.
Em um artigo publicado em outubro de 2012, Wilczek levou a ideia um passo adiante ao imaginar um anel de partículas quânticas que interagem umas com as outras e formam aglomerações. Quando colocados em movimento por um campo magnético fraco, esses aglomerados oscilariam de um modo que satisfaria os critérios para um cristal do tempo.
A dissertação de Bruno questiona a ideia de que um sistema desses realmente está em seu estado de menor energia. Ele apresenta uma prova matemática de que qualquer sistema dessa natureza precisa receber alguma energia inicial para começar a girar. Mas ele argumenta que se as partículas não tiverem a energia mínima possível elas poderiam liberar alguma para se tornarem mais estáveis, rompendo assim o padrão de repetição de um cristal do tempo.
“Meu artigo encerra o assunto sobre cristais do tempo quânticos para uma classe bastante abrangente de sistemas”, afirma Bruno.
Uma equipe de físicos experimentais sediados nos Estados Unidos e na China discorda. Tongcang Li, da University of California em Berkeley e seus colegas estão planejando criar um cristal do tempo a partir de íons dispostos em um anel. Esses planos não mudaram apesar do artigo de Bruno. “O experimento que propusemos ajudará a resolver o debate”, declara Li.
De acordo com ele, Bruno pode ter adotado uma definição rigorosa demais para um cristal do tempo. Um sistema “metaestável”, que está quase em seu estado de menor energia, não existiria para sempre dizem os pesquisadores, mas poderia durar o tempo suficiente para ser interessante, levando talvez à criação de relógios que possam funcionar por um tempo muito longo sem qualquer estímulo.
Embora relute em desistir de sua ideia original, Wilczek admite que o conceito de um cristal do tempo talvez precise evoluir. “O assunto ainda está em um estágio exploratório e pode levar algum tempo para descobrir exatamente quais definições e sistemas são mais proveitosos”, diz ele.
Enquanto Li continua trabalhando com íons, a publicação mais recente de Wilczek descreve outro esquema, talvez mais simples, para fazer um cristal do tempo. Ele começa com dois pedaços de supercondutores conectados por um isolante não-supercondutor. Esse dispositivo, chamado de “Junção Josephson”, pode criar flutuações em correntes elétricas quando se aplica uma tensão externa. Wilczek argumenta que meramente quebrar o contato entre os supercondutores poderia criar os tipos de oscilações que caracterizam um cristal do tempo. Só o tempo dirá se isso satisfará seus críticos, e aonde tudo isso poderá levar.

Fonte: Nature