Mostrando postagens com marcador Astrofísica. Mostrar todas as postagens
Mostrando postagens com marcador Astrofísica. Mostrar todas as postagens

sexta-feira, 18 de agosto de 2023

Propriedades dos neutrinos em supernovas

Num novo estudo, pesquisadores deram um passo importante para compreender como as estrelas em explosão podem ajudar a revelar como os neutrinos, misteriosas partículas subatômicas, interagem secretamente entre si.

© OSU (ilustração de neutrinos gerados por supernovas)

Os neutrinos, que são das partículas elementares menos bem compreendidas, raramente interagem com a matéria normal e, ao invés, viajam invisivelmente através dela quase à velocidade da luz. Estas partículas fantasmagóricas são mais numerosas do que todos os átomos do Universo e estão sempre passando inofensivamente pelos nossos corpos, mas devido à sua baixa massa e à ausência de carga elétrica, podem ser incrivelmente difíceis de encontrar e de estudar. 

No entanto, pesquisadores da Universidade do Estado do Ohio estabeleceram um novo quadro que explica como as supernovas, explosões massivas que anunciam a morte de estrelas em colapso, podem ser utilizadas como ferramentas poderosas para estudar a forma como as autointerações dos neutrinos podem causar vastas alterações cosmológicas no Universo.

Os neutrinos têm apenas taxas de interação muito pequenas com a matéria típica, pelo que é difícil detectá-los e testar as suas propriedades. É por isso que temos de usar a astrofísica e a cosmologia para descobrir fenômenos interessantes sobre eles. Considerados importantes para a formação do Universo primitivo, os neutrinos continuam intrigantes, apesar de se saber que têm origem em várias fontes, como reatores nucleares ou no interior de estrelas moribundas. 

Mas, calculando a forma como as autointerações afetariam o sinal de neutrinos da SN 1987A, a supernova mais próxima observada nos tempos modernos, os astrofísicos descobriram que, quando os neutrinos interagem entre si, formam um fluido fortemente acoplado que se expande sob a hidrodinâmica relativista, um ramo da física que lida com a forma como os fluxos afetam os objetos sólidos de duas maneiras diferentes. 

No caso do chamado "fluxo de explosão", a equipe teoriza que, tal como rebentar um balão altamente pressurizado no vácuo do espaço empurraria a energia para fora, uma explosão produz um fluido de neutrinos que se move em todas as direções. O segundo caso, descrito como um "fluxo de vento", imagina um balão altamente pressurizado com muitos bocais, onde os neutrinos escapam a um ritmo mais constante, semelhante a um jato de vento constante.

Embora a teoria do fluxo de vento seja mais provável de ocorrer na natureza, se o caso da explosão se concretizar, os cientistas poderão ver novas assinaturas observáveis de neutrinos emitidas por supernovas, permitindo uma sensibilidade sem precedentes nas autointerações dos neutrinos. 

Uma das razões pelas quais é tão vital compreender estes mecanismos é que se os neutrinos estão agindo como um fluido, isso significa que estão atuando em conjunto. E se as propriedades dos neutrinos são diferentes como um coletivo do que individualmente, então a física das supernovas também pode sofrer alterações. Mas ainda não se sabe se estas alterações se devem apenas ao caso da explosão ou ao caso do fluxo de vento.

A dinâmica das supernovas é complicada, mas este resultado é prometedor porque, com a hidrodinâmica relativista, sabemos que há uma bifurcação na compreensão do seu funcionamento atual. Ainda assim, é necessário fazer mais estudos antes dos cientistas poderem excluir a possibilidade de o caso da explosão ocorrer também no interior das supernovas. 

Apesar destas incertezas, o estudo é um grande marco na resposta a uma questão astrofísica com décadas de existência: como é que os neutrinos se dispersam quando são ejetados das supernovas?

Este estudo descobriu que, no caso da explosão, é possível uma sensibilidade sem precedentes às autointerações dos neutrinos, mesmo com dados esparsos de neutrinos da SN 1987A e pressupostos de análise conservadores. 

Este problema permaneceu praticamente intocado durante 35 anos. No futuro, a equipe espera que o seu trabalho seja usado como um trampolim para investigar melhor as autointerações dos neutrinos. No entanto, uma vez que, na Via Láctea, só ocorrem cerca de duas ou três supernovas por século, é provável que os pesquisadores tenham de esperar décadas para recolher suficientes dados de neutrinos e assim provar as suas ideias.

Um artigo foi publicado no periódico Physical Review Letters

Fonte: Ohio State University

quinta-feira, 1 de junho de 2023

Ouvindo o "timbre" dos buracos negros

A teoria da relatividade geral de Albert Einstein descreve a forma como o tecido do espaço-tempo, é curvado em resposta à massa.

© Y. Steele (ilustração do espaço-tempo de um buraco negro)

A imagem mostra o remanescente da fusão de um buraco negro binário que está emitindo as suas últimas ondas gravitacionais antes de assentar. As ondas gravitacionais previstas pela relatividade geral são representadas pelas espirais azuis que se afastam do buraco negro. Os desvios da relatividade geral podem aparecer como deformações das ondas gravitacionais e são representados pelas espirais vermelhas.

O nosso Sol, por exemplo, deforma o espaço à nossa volta de tal forma que o planeta Terra orbita o Sol como uma bola de gude atirado para um funil (a Terra não cai para o Sol devido ao impulso lateral do planeta). 

A teoria, que foi revolucionária no momento em que foi proposta em 1915, reformulou a gravidade como uma curvatura do espaço-tempo. Por muito fundamental que esta teoria seja para a própria natureza do espaço à nossa volta, isso pode não ser o fim da história. Em vez disso, as teorias quânticas da gravidade, que tentam unificar a relatividade geral com a física quântica, contêm segredos sobre o funcionamento do nosso Universo a níveis mais profundos. 

Um dos locais onde se podem procurar assinaturas quânticas de gravidade é nas poderosas colisões entre buracos negros, onde a gravidade atinge o seu ponto mais extremo. Os buracos negros são os objetos mais densos do Universo, onde a sua gravidade é tão forte que espremem os objetos que neles caem como se fossem espaguete. 

Quando dois buracos negros colidem e se fundem num corpo maior, perturbam o espaço-tempo ao redor, enviando ondas gravitacionais em todas as direções. O LIGO (Laser Interferometer Gravitational-Wave Observatory) tem detectado regularmente ondas gravitacionais geradas por fusões de buracos negros desde 2015 (os seus observatórios parceiros, Virgo e KAGRA, juntaram-se à caça em 2017 e 2020, respetivamente). 

No entanto, até agora, a teoria da relatividade geral tem passado teste após teste, sem sinais de ruptura. Agora, dois novos artigos científicos liderados pelo Caltech (California Institute of Technology), publicados nos periódicos Physical Review X e Physical Review Letters, descrevem novos métodos para submeter a relatividade geral a testes ainda mais rigorosos.

Observando mais de perto as estruturas dos buracos negros e as ondulações no espaço-tempo que produzem, os cientistas procuram sinais de pequenos desvios da relatividade geral que indiciem a presença de gravitação quântica. Quando dois buracos negros se fundem para produzir um buraco negro maior, o buraco negro final gera um sinal sonoro.

A qualidade do seu timbre, pode ser diferente das previsões da relatividade geral se certas teorias da gravitação quântica estiverem corretas. Estes métodos foram concebidos para procurar diferenças na qualidade desta fase de descida do zumbido, como os harmônicos e os sobretons. 

O primeiro artigo, publicado na revista Physical Review X, apresenta uma nova equação para descrever o "timbre" dos buracos negros no âmbito de certas teorias quânticas da gravidade. O trabalho baseia-se numa equação inovadora desenvolvida há 50 anos por Saul Teukolsky, professor de astrofísica teórica no Caltech. Teukolsky tinha desenvolvido uma equação completa para compreender melhor a forma como as ondulações da geometria do espaço-tempo se propagam à volta dos buracos negros. Em contraste com os métodos numéricos da relatividade, em que são necessários supercomputadores para resolver simultaneamente muitas equações diferenciais da relatividade geral, a equação de Teukolsky é muito mais simples de utilizar e fornece uma visão física direta do problema. 

Se alguém quiser resolver todas as equações de Einstein da fusão de um buraco negro para a simular com precisão, tem de recorrer a supercomputadores. Os métodos numéricos da relatividade são extremamente importantes para simular com exatidão as fusões de buracos negros e constituem uma base crucial para a interpretação dos dados do LIGO. Mas é extremamente difícil para os físicos extrair intuições diretamente dos resultados numéricos. A equação de Teukolsky fornece uma visão intuitiva do que se está passando na fase de descida do zumbido. Esta equação permite modelar e compreender as ondas gravitacionais que se propagam à volta dos buracos negros, que são mais exóticas do que Einstein previu.

O segundo artigo, publicado na revista Physical Review Letters, descreve uma nova forma de aplicar a equação de Teukolsky aos dados reais obtidos pelo LIGO e pelos seus parceiros na sua próxima série de observações. Esta abordagem de análise de dados utiliza uma série de filtros para remover características do "timbre" de um buraco negro previstas pela relatividade geral, de modo a que possam ser reveladas assinaturas potencialmente sutis além da relatividade geral.

Os físicos encontraram uma forma de traduzir um grande conjunto de equações complexas numa só equação, o que é extremamente útil. Esta equação é mais eficiente e mais fácil de usar do que os métodos que usados anteriormente. Os dois estudos complementam-se e podem aumentar significativamente a capacidade para sondar a gravidade.

Fonte: California Institute of Technology

terça-feira, 6 de outubro de 2020

Buracos negros e o centro da Via Láctea

O Prêmio Nobel de Física de 2020 foi concedido a três pesquisadores que fizeram descobertas sobre buracos negros, anunciou hoje a Academia Real das Ciências da Suécia.


© NASA (ilustração de região próxima de um buraco negro)

Roger Penrose, da Universidade de Oxford vai receber metade do prêmio de 10 milhões de coroas suecas (6,2 milhões de reais) por ter provado, em 1965, que a teoria geral da relatividade leva à formação de buracos negros. A outra metade da premiação foi concedida ao alemão Reinhard Genzel e à americana Andrea Ghez, que lideraram dois grupos de astrônomos na descoberta de um objeto invisível e extremamente pesado que governa as órbitas das estrelas no centro de nossa galáxia. Um buraco negro supermassivo é a única explicação atualmente conhecida.

O cientista Roger Penrose usou métodos matemáticos engenhosos para provar que os buracos negros são uma consequência direta da teoria geral da relatividade de Albert Einstein. O próprio Einstein não acreditava que buracos negros realmente existissem, estes monstros supermassivos ​​que capturam tudo que entra neles. Nada pode escapar, nem mesmo a luz.

Em janeiro de 1965, dez anos após a morte de Einstein, Roger Penrose provou que os buracos negros realmente podem se formar e os descreveu em detalhes; no fundo, os buracos negros escondem uma singularidade em que cessam todas as leis conhecidas da natureza. Seu artigo inovador ainda é considerado a contribuição mais importante para a teoria geral da relatividade desde Einstein.

Reinhard Genzel, diretor do Instituto Max Planck de Física Extraterrestre, na Alemanha, e professor da Universidade da Califórnia, nos EUA, e Andrea Ghez, professora da Universidade da Califórnia, lideram dois grupos de astrônomos que, desde o início dos anos 1990, se concentra em estudar uma região no centro da Via Láctea, onde está localizado o buraco negro supermassivo, denominado Sagitário A*.


© UCLA (animação de estrelas girando ao redor de buraco negro)

Uma animação das órbitas estelares no centro de 0,5 segundos de arco. Imagens tiradas dos anos de 1995 a 2016 são usadas para rastrear estrelas específicas orbitando o buraco negro proposto no centro da Galáxia. Estas órbitas, Aplicando as Leis de Kepler, estas órbitas fornecem a melhor evidência de um buraco negro supermassivo. Especialmente importante é a estrela S0-2, pois foi observada por mais de um período orbital completo, que é de apenas 16,17 anos. Veja também a notícia: Estrela "dançando" em torno de buraco negro supermassivo.

Usando os maiores telescópios do mundo, Genzel e Ghez desenvolveram métodos para ver através das enormes nuvens de gás interestelar e poeira até o centro da Via Láctea. Estendendo os limites da tecnologia, eles refinaram novas técnicas para compensar as distorções causadas pela atmosfera da Terra, construindo instrumentos exclusivos e se comprometendo com pesquisas de longo prazo. Seu trabalho pioneiro nos deu a evidência mais convincente de um buraco negro supermassivo no centro da Via Láctea.

Desta maneira foi possível mapear as órbitas das estrelas mais brilhantes próximas ao centro da nossa Galáxia e encontraram um objeto invisível extremamente pesado que puxa este amontoado de estrelas, fazendo-as orbitar em velocidades vertiginosas. Cerca de quatro milhões de massas solares estão reunidas em uma região não maior do que nosso Sistema Solar.

“As descobertas dos laureados deste ano abriram novos caminhos no estudo de objetos compactos e supermassivos. Mas estes objetos exóticos ainda colocam muitas questões que imploram por respostas e motivam pesquisas futuras. Não apenas perguntas sobre sua estrutura interna, mas também perguntas sobre como testar nossa teoria da gravidade sob as condições extremas nas imediações de um buraco negro”, disse David Haviland, presidente do Comitê Nobel de Física.

Fonte: The Royal Swedish Academy of Sciences

terça-feira, 8 de outubro de 2019

Novas perspectivas sobre o Universo

Os cientistas James Peebles, Michel Mayor e Didier Queloz levaram o Prêmio Nobel de Física de 2019.
© Nobel Prize/Johan Jarnestad (explorando o cosmos)

O anúncio foi divulgado na manhã desta terça-feira pelo comitê da Academia Real de Ciências da Suécia, em Estocolmo. Na avaliação da instituição, o trabalho dos três físicos introduziu uma nova compreensão da história e estrutura do Universo através das teorias de cosmologia física desenvolvidas por Peebles e a descoberta de um exoplaneta por Mayor e Queloz.

O Prêmio Nobel de Física deste ano recompensa nova compreensão da estrutura do Universo e a primeira descoberta de um planeta em órbita n uma estrela do tipo solar fora do nosso Sistema Solar.
As ideias de James Peebles sobre cosmologia física enriqueceu todo o campo de pesquisa e lançou as bases para a transformação da cosmologia nos últimos cinquenta anos, da especulação à ciência. Seu referencial teórico, desenvolvido desde meados da década de 1960, é a base de estudos contemporâneos sobre o Universo.

O modelo do Big Bang descreve o Universo a partir dos primeiros momentos, quase 14 bilhões de anos atrás, quando estava extremamente quente e denso. Desde então, o Universo vem se expandindo, tornando-se maior e mais frio. Após 400.000 anos do Big Bang, o Universo se tornou transparente e os raios de luz foram capazes de viajar através espaço. Ainda hoje, essa radiação antiga está por toda parte, onde muitos dos segredos do Universo estão escondidos.

A cosmologia moderna é baseada na teoria da relatividade geral de Albert Einstein e assume uma era inicial, o Big Bang, quando o Universo era extremamente quente e denso. Um pouco menos de 400.000 anos após o Big Bang, a temperatura diminuiu para cerca de 3.000 K, permitindo que os elétrons se combinassem com núcleos para a formação de átomos.

Porque não sobraram partículas carregadas que pudessem interagir facilmente com os fótons, o Universo se tornou transparente à luz. Esta radiação é agora visível como a Cosmic Microwave Background  (CMB). Devido ao desvio para o vermelho cosmológico, sua temperatura atualmente é de penas 2,7K, um fator de cerca de 1.100 menores desde a dissociação de matéria e radiação. A radiação cósmica de fundo de micro-ondas consiste de ondas eletromagnéticas na frequência de rádio que permeiam todo o espaço.

Por intermédio de cálculos teóricos, James Peebles foi capaz de interpretar esses traços desde a infância do Universo e descubriu novos processos físicos.

Os resultados nos mostraram um Universo em que apenas 5% de seu conteúdo é conhecido, compondo a matéria ordinária que constituída por estrelas, planetas, árvores e nós. O restante, 95%, é desconhecido, perfazendo a matéria escura e energia escura. Isso é um mistério e um desafio à física moderna.

Em outubro de 1995, Michel Mayor e Didier Queloz anunciaram a primeira descoberta de um planeta fora do nosso sistema solar, um exoplaneta, orbitando uma estrela do tipo solar em nossa galáxia, a Via Láctea. No Observatório Haute-Provence, no sul da França, usando instrumentos feitos sob medida, eles foram capazes de ver o exoplaneta 51 Pegasi b, uma bola gasosa comparável com o maior gigante gasoso do Sistema Solar, o planeta Júpiter.

Esta descoberta iniciou uma revolução na astronomia e mais de 4.000 exoplanetas já foram encontrados na Via Láctea. Mundos novos e estranhos ainda estão sendo descobertos, com uma incrível variedade de tamanhos, formas e órbitas. Eles desafiam nossas ideias preconcebidas sobre sistemas planetários e estão forçando os cientistas a revisar suas teorias dos processos físicos por trás das origens dos planetas. Com vários projetos planejados para começar a procurar exoplanetas, podemos encontrar uma resposta para a eterna questão de saber se existe vida lá fora.

Os Laureados deste ano transformaram nossos pensamentos sobre o cosmos. Enquanto as descobertas teóricas de James Peebles contribuiu para a nossa compreensão de como o Universo evoluiu após o Big Bang, Michel Mayor e Didier Queloz explorou nossos bairros cósmicos em busca de planetas desconhecidos. Suas descobertas mudou para sempre nossas concepções do mundo.

James Peebles, professor da Universidade de Princeton, EUA, levará metade do prêmio de 9 milhões de coroas suecas, o equivalente a R$ 3,7 milhões. O restante será dividido entre Michel Mayor, docente da Universidade de Genebra, e Didier Queloz, que integra a mesma instituição, além da Universidade de Cambridge, no Reino Unido.

Fonte: The Royal Swedish Academy of Sciences

quarta-feira, 3 de julho de 2019

A criação de plasma de quarks e glúons

Uma ínfima fração de segundo após o Big Bang, o Universo material era constituído por um plasma composto pelas partículas elementares conhecidas como quarks e glúons. É o que propõe o chamado modelo padrão sobre a origem do Universo.
© CERN/LHC (colisão de prótons com núcleos atômicos de chumbo)

Com a rápida expansão e o consequente resfriamento, aquele meio informe e intensamente dinâmico se fragmentou e cada pequeno conjunto de quarks e glúons deu origem a uma partícula composta, o hádron. Assim foram formados, por exemplo, os prótons, cada qual constituído por dois quarks do tipo up e um quark do tipo down (os dois tipos com as menores massas entre todos os quarks), interagindo por meio de glúons.

Essa situação primordial tem sido reproduzida no LHC, o Grande Colisor de Hádrons instalado no CERN, a Organização Europeia para a Pesquisa Nuclear, na fronteira entre a França e a Suíça, e também no RHIC, o Colisor Relativístico de Íons Pesados, instalado no Brookhaven National Laboratory, nos Estados Unidos.

As primeiras detecções do plasma de quarks e glúons foram feitas a partir da colisão de dois núcleos atômicos de elementos pesados, como chumbo e ouro. Agora, a colaboração ALICE, um dos grupos internacionais de pesquisadores que atua no LHC, obteve uma das “assinaturas” características do plasma de quarks e glúons por meio da colisão de prótons com núcleos de chumbo.

Esse resultado, conseguido a partir de precursores muito mais leves, foi alcançado graças ao altíssimo patamar de energia das partículas durante a colisão, de 5,02 TeV (5,02 teraelétrons-volt ou 5,02 x 1012 elétrons-volt).

O físico brasileiro Henrique Zanoli, que participa da colaboração ALICE, estudou essa colisão em seu trabalho de doutoramento.

“O experimento apresentou uma anisotropia azimutal na distribuição das partículas geradas pela colisão. Isso quer dizer que as partículas resultantes da colisão não foram produzidas nas mesmas quantidades em todas as direções. O padrão de distribuição dos elétrons que observamos é característico da assinatura do plasma de quarks e glúons,” disse Zanoli.

Segundo Zanoli, a produção de quarks pesados ocorreu em um momento em que a densidade de energia do sistema ainda estava extremamente alta, e sua evolução é uma interessante ferramenta para estudar a presença do plasma de quarks e glúons.

“Esses quarks pesados, que são produzidos antes do plasma e o atravessam, fornecem informações sobre o plasma, assim como uma emissão de pósitrons, que atravessa o corpo humano, fornece informações sobre esse corpo em uma tomografia. Se as partículas estudadas tivessem sido produzidas no fim do processo, essa analogia não seria válida e não poderíamos afirmar, com base no resultado final, quais são as características do plasma de quarks e glúons formado. Mas, como foram produzidos no início, os quarks pesados se tornam marcadores muito confiáveis,” acrescentou Zanoli.

O plasma de quarks e glúons é tema de muita pesquisa na atualidade. E isso principalmente por dois motivos. Primeiro, porque agora é possível produzir o plasma experimentalmente em colisores, como o LHC e o RHIC. Segundo, e essa é a maior motivação dos experimentos, porque possibilita compreender o Universo primordial e também o que ocorre em objetos astrofísicos, como as estrelas de nêutrons.

A produção do plasma de quarks e glúons em laboratório se tornou possível devido à altíssima densidade de energia alcançada nos grandes colisores da atualidade.

Um patamar de 5 TeV não é tão alto quando se pensa em um objeto macroscópico, constituído por uma quantidade enorme de partículas distribuídas em um grande volume. Mas, quando se divide 5 TeV pelo volume de um próton, o resultado é uma densidade energética a que somente agora a humanidade teve acesso em escala de laboratório.

Fonte: Physical Review Letters

terça-feira, 17 de julho de 2018

Uma fonte de raios cósmicos fora da Via Láctea

Parece ter chegado ao fim o mistério da origem dos raios cósmicos de altíssima energia, as partículas mais energéticas do Universo, que chegam à Terra vindos de fora de nossa galáxia, a Via Láctea.

ilustração de um blazar emitindo neutrinos

© DESY (ilustração de um blazar emitindo neutrinos)

Uma equipe internacional de cientistas encontrou a primeira evidência de uma fonte de neutrinos de alta energia: uma galáxia ativa, ou blazar.

É a primeira vez que se identifica com tanta precisão a possível origem destas partículas, que, como se confirmou recentemente, são geradas fora da Via Láctea. A observação foi feita no dia 22 de setembro de 2017 no Observatório de Neutrinos IceCube, uma rede de 5.160 detectores instalados sob um bilhão de toneladas de gelo, construída próxima ao polo Sul, na Antártida.

As informações obtidas até agora corroboram a hipótese de que os buracos negros funcionariam como potentes aceleradores cósmicos de partículas, que atingiriam energias de milhões a bilhões de vezes superiores às produzidas nos maiores equipamentos já construídos pela ciência.

Descobertos em 1912 pelo físico austríaco Victor Hess, os raios cósmicos são partículas eletricamente carregadas vindas do espaço com velocidades próximas à da luz. Apesar de serem algumas das partículas mais abundantes no Universo, 100 trilhões passam através dos nossos corpos a cada segundo, estas partículas subatõmicas, eletricamente neutras, são notoriamente difíceis de serem detectadas porque raramente interagem com a matéria.

Enquanto os neutrinos primordiais foram criados durante o Big Bang, muitas destas partículas ilusórias são rotineiramente produzidas em reações nucleares através do cosmos. A maioria dos neutrinos que chegam à Terra derivam do Sol, mas acredita-se que aqueles que nos atingem com as energias mais altas provêm das mesmas fontes que os raios cósmicos, partículas altamente energéticas originárias de fontes exóticas fora do Sistema Solar.

Os raios cósmicos de mais baixa energia são criados e acelerados em explosões estelares na Via Láctea. Já os mais energéticos, com energias superiores a 1 EeV (1 exaelétrons-volts, ou 1018 elétrons-volts), devem ser prótons ou núcleos atômicos vindos de lugares muito distantes, fora de nossa galáxia. O principal desafio de determinar sua origem é que, por serem partículas eletricamente carregadas, não viajam em linha reta: sua trajetória é desviada ao atravessarem campos magnéticos dentro e fora das galáxias.

Uma maneira de contornar este problema é observar neutrinos de alta energia. Os neutrinos têm uma massa ínfima, carga elétrica nula e, portanto, quase não interagem com a matéria. Estas características permitem que viajem pelo espaço em linha reta e a velocidades próximas à da luz, atravessando quase tudo o que encontram pelo caminho sem serem perturbados, razão por que são chamados de partículas fantasmas.

Os astrofísicos estimam que alguns dos neutrinos de alta energia observados na Terra também venham de fora da galáxia e sejam produzidos pelos mesmos fenômenos que geram os raios cósmicos. Assim, traçar a origem destes neutrinos extragalácticos levaria também à origem dos raios cósmicos ultraenergéticos.

Em setembro de 2017, os detectores do IceCube registraram um sinal indicando a passagem de um único neutrino com energia de 290 TeV (teraelétrons-volts), 40 vezes a dos prótons acelerados no Large Hadron Collider (LHC), o maior acelerador de partículas do mundo, instalado na fronteira da Suíça com a França. Ao refazer o percurso do neutrino nos detectores do IceCube, os pesquisadores verificaram que sua origem seria um ponto do céu na constelação de Órion.

O telescópio espacial de raios gama Fermi da NASA e os telescópios MAGIC (Major Atmospheric Gamma Imaging Cherenkov) em La Palma, nas Ilhas Canárias, observaram esta parte do céu e encontraram o blazar conhecido, TXS 0506+056, num estado de intensa emissão de alta energia ao mesmo tempo que o neutrino foi detectado no Polo Sul.

Os blazares são os núcleos centrais de galáxias gigantes que abrigam um buraco negro supermassivo no núcleo, onde a matéria espiralada forma um disco giratório quente que gera enormes quantidades de energia, junto com um par de jatos relativísticos.

O TXS 0506+056 é uma galáxia com núcleo ativo. Isso significa que ela abriga em seu centro um buraco negro com massa muito elevada que, ao consumir a matéria ao redor, expulsa jatos de radiação luminosa que brilha mais do que todas as estrelas da galáxia.

Após os alertas do IceCube e do Fermi, 17 observatórios ao redor do mundo acompanharam as variações de brilho do TXS 0506+056. O objeto emite radiação em todas as faixas de energia do espectro eletromagnético, das mais baixas (ondas de rádio) até as mais altas (raios X e gama).

As observações sugerem que o brilho detectado seja a radiação gerada por um jato de matéria ejetada por campos magnéticos ao redor de um buraco negro de massa muito elevada (equivalente à de bilhões de sóis) no centro de uma galáxia a 4 bilhões de anos-luz de distância da Terra.

No caso do TXS 0506+056, seu jato está apontado diretamente para a Terra. Este aspecto permite que tanto a radiação eletromagnética, quanto os neutrinos produzidos ao longo do jato cheguem ao planeta depois de viajar durante 4 bilhões de anos em linha reta.

Duas coincidências permitiram aos pesquisadores conectar a origem do neutrino ao blazar: a detecção da partícula ocorreu simultaneamente ao aumento de brilho do TXS 0506+056 e tanto o neutrino quanto a radiação vieram da mesma região do espaço.

Seria essa coincidência mero fruto do acaso? Para diminuir o risco de estarem se iludindo, os pesquisadores analisaram dados coletados durante 10 anos pelo IceCube em busca de mais detecções de neutrinos de alta energia vindos da região do blazar TXS 0506+056. De setembro de 2014 a março de 2015, uma dúzia de neutrinos, possivelmente oriundos daquele mesmo ponto no céu, atravessaram os detectores ocultos no gelo da Antártida, mas deixaram um traço mais difuso.

Em 2017, a combinação de duas técnicas permitiu identificar a região do espaço em que ocorreu o choque explosivo de duas estrelas de nêutrons e estudar em detalhes as consequências desse tipo de colisão, fonte de elementos químicos pesados do Universo, como o ouro.

Esta observação fortalece muito a detecção inicial de um único neutrino de alta energia e aumenta o volume de dados que indicam que o blazar é a primeira fonte conhecida de neutrinos de alta energia e raios cósmicos de alta energia.

Fonte: Science

quinta-feira, 27 de julho de 2017

Como detectar ondas gravitacionais com hélio

As ondas gravitacionais de pulsares próximos poderiam ser detectadas usando apenas alguns quilogramas de hélio 4He superfluido, de acordo com físicos nos EUA.

pulsar Vela

© Chandra (pulsar Vela)

A imagem acima mostra a evolução temporal do vento do pulsar Vela observado na faixa de energia espectral de 0,5 a 8 keV.

Seu detector, que ainda não foi construído, poderia medir ondas sonoras no superfluido causadas por ondas gravitacionais na faixa de 0,1 a 1,5 kHz.

As ondas gravitacionais são ondulações no espaço-tempo que são criadas quando objetos massivos são acelerados sob certas condições. A primeira detecção de ondas gravitacionais foi feita em 2015, quando o observatório Laser Interferometer Gravitational-Wave Observatory (LIGO) detectou um sinal de um buraco negro binário coalescente. Mais duas ondas gravitacionais já foram detectadas pela LIGO, ambas associadas a buracos negros binários.

O LIGO é um detector de banda larga que pode captar sinais na faixa de 10 Hz a 5 kHz. É particularmente propício para detectar sinais transitórios associada aos buracos negros coalescentes.

Swati Singh do Williams College, Laura DeLorenzo e Keith Schwab do Caltech e Igor Pikovski da Universidade de Harvard querem construir um detector que possa se concentrar em uma banda de frequência relativamente estreita para detectar ondas gravitacionais de pulsares.

Um pulsar é uma estrela de nêutrons de rotação rápida que deverá transmitir continuamente ondas gravitacionais a uma frequência específica na faixa de 1 Hz a 1 kHz, com a frequência dependendo das características físicas do pulsar. Ao fazer uma medição de banda estreita durante um longo período de tempo, um sinal de ruído muito baixo de um pulsar poderia, em princípio, ser detectado.

Este detector compreende vários quilogramas de hélio superfluido mantido em um recipiente cilíndrico que é acoplado em um ressonador micro-ondas supercondutor. Confinamento no recipiente significa que o superfluido ressoará com ondas de som em determinadas frequências, assim como um instrumento musical.

Esta ressonância acústica também significa que o superfluido deve atuar como uma antena que é sintonizada para detectar ondas gravitacionais em frequências específicas. Quando tal onda gravitacional viaja através do detector, criaria um campo de tensão que produziria ondas sonoras no hélio. O ressonador de micro-ondas converteria essas ondas em um sinal mensurável.

Embora outros tenham tentado fazer estas antenas usando barras de metal, a equipe diz que o hélio superfluido oferece vários benefícios, incluindo o fato de que a frequência do detector pode ser alterada ajustando a pressão do hélio.

Calcula-se que usando a tecnologia de transdutor de micro-ondas de última geração, o detector poderia medir sinais de certos tipos de pulsares depois de alguns meses.

Fonte: New Journal of Physics

domingo, 23 de abril de 2017

Massa negativa desafia as leis da Física

Físicos criaram um fluido com "massa negativa", que acelera em direção oposta quando empurrado.

fluido com massa negativa

© Physical Review Letters (fluido com massa negativa)

A descoberta desafia a Segunda Lei de Newton, conhecida como o Princípio Fundamental da Dinâmica, que diz que quando empurrado, o objeto se acelera na mesma direção que a força aplicada nele.

Mas em teoria, matéria pode ter massa negativa, da mesma forma que uma carga elétrica pode ser positiva ou negativa. Uma massa efetiva negativa pode ser realizada em sistemas quânticos através da engenharia da relação de dispersão. Um método poderoso é fornecido pelo acoplamento spin-órbita, que está atualmente no centro de intensos esforços de pesquisa.

Uma equipe de cientistas, liderada por Peter Engels, da Washington State University (WSU), esfriou átomos de rubídio a uma temperatura pouco acima do zero absoluto (próximo de -273ºC), gerando o que é conhecido como Condensado de Bose-Einstein.

Neste estado da matéria, as partículas se comportam como ondas, se movem de forma extremamente lenta, conforme previsto pela mecânica quântica. Elas também se sincronizam e se movimentam juntas no que é conhecido como superfluido, que flui sem perder energia.

Nesta pesquisa um condensado de Bose-Einstein foi medido acoplado à órbita de spin em expansão cuja dispersão apresenta uma região de massa efetiva negativa. Os pesquisadores observaram uma variedade de fenômenos dinâmicos, incluindo a quebra da paridade e da covariância galileana, instabilidades dinâmicas e auto-aprisionamento. Os resultados experimentais são reproduzidos por uma simulação de banda única de Gross-Pitaevskii, demonstrando que as características emergentes, tais como: ondas de choque, trens solitônicos, auto-aprisionamento, entre outros, originam-se de uma dispersão modificada. Este trabalho também fornece novas informações sobre fenômenos relacionados em redes ópticas, onde a estrutura periódica subjacente muitas vezes complica sua interpretação.

Para criar as condições para a massa negativa, os pesquisadores usaram lasers para capturar os átomos de rubídio e empurrá-los para frente e para trás, mudando a forma como eles giram.

Os lasers prendem os átomos como se eles estivessem numa região com menos de 100 micrômetros de diâmetro. Neste ponto, o superfluido de rubídio tem massa normal. Mas, quando os átomos foram liberados da "armadilha do laser", o superátomo de rubídio se expande, revelando massa negativa.

Para criar as condições para a massa negativa, os pesquisadores aplicaram um segundo conjunto de lasers que empurra estes átomos em expansão de um lado para outro, mudando o modo como eles giram. Desta forma, quando alguns átomos de rubídio escorrem para fora da armadilha original rápido o suficiente, eles se comportam como se tivessem massa negativa.

"Com massa negativa, se você empurrar alguma coisa, ela acelera em sua direção," disse Michael Forbes, professor-assistente de Física da WSU. "Parece que o rubídio se choca contra uma parede invisível".

A técnica poderia ser usada para entender melhor o fenômeno, dizem os pesquisadores. "Primeiramente, nos chamou atenção o controle que temos sobre a natureza da massa negativa, sem quaisquer complicações," diz Forbes.

Este controle também fornece aos pesquisadores uma ferramenta para explorar as possíveis relações entre massa negativa e fenômenos observados no cosmos, como estrelas de nêutrons, buracos negros e energia escura.

Fonte: Physical Review Letters

terça-feira, 16 de agosto de 2016

Vácuo quântico atua na rotação dos pulsares

A resistência ao movimento oferecida pelo vácuo pode estar desacelerando a rotação ultrarrápida das estrelas de nêutrons que constituem os pulsares.

ilustração de um pulsar

© NASA (ilustração de um pulsar)

A instigante hipótese, resultante de um estudo realizado pelos pesquisadores brasileiros: Jaziel Goulart Coelho, pós-doutorando do Instituto Nacional de Pesquisas Espaciais (INPE), Jonas Pedro Pereira, atualmente pós-doutorando da Universidade Federal do ABC (UFABC), e José Carlos Neves de Araújo, pesquisador titular do INPE.

As observações astronômicas informam que, a cada segundo, o período de rotação dos pulsares atrasa de um centésimo trilionésimo (10-14) a um décimo trilionésimo (10-13) de segundo. O mecanismo clássico de perda de energia, por radiação de dipolo magnético, não é suficiente para explicar esse atraso. É preciso considerar algo mais. Este estudo possibilitou concluir que esse componente adicional poderia ser a frenagem exercida pela fricção do vácuo quântico.

Na mecânica quântica o vácuo não é realmente vazio, mas permeado por flutuações. Neste meio, extremamente dinâmico, flutuações locais de potencial produzem o tempo todo pares de partículas e antipartículas, que se aniquilam em seguida. Assim, por mais tênue que possa ser o espaço interestelar, seu efeito sobre corpos altamente compactos em rotação, como as estrelas de nêutrons, não seria negligenciável.

Já foram identificados cerca de 2 mil pulsares. Mas, devido a grandes dificuldades no processo de observação, apenas nove deles têm os seus parâmetros bem estabelecidos.

Os pesquisadores reuniram os dados relativos a estes nove pulsares, registrados na literatura, utilizando conceitos da física fundamental. Eles constataram que, além da perda de energia devida à radiação eletromagnética, um outro fator poderia estar contribuindo para a desaceleração do movimento de rotação: a fricção do vácuo quântico.

Os períodos de rotação dos pulsares, bem como suas variações temporais, são determinados observacionalmente. A partir deles, é possível calcular o chamado índice de frenagem, caracterizado pelo atraso de 10-14 a 10-13 segundo por segundo. Para explicar este índice, os pesquisadores combinaram dois mecanismos de perda de energia: a radiação de dipolo magnético clássica e a fricção do vácuo quântico.

Nota-se que a produção de calor está intrinsecamente associada à fricção do vácuo quântico. Esta é uma das consequências da interação de um campo magnético muito forte com um meio supermagnetizado. O calor surge do atrito do vácuo com a superfície da estrela, da mesma forma que o movimento de uma pá na água por um longo tempo pode aquecê-la.

Aqui, convém apresentar um resumo do estado atual dos conhecimentos acerca dos pulsares. A primeira observação de um objeto desse tipo foi feita em 1967 pela astrofísica irlandesa Jocelyn Bell, que então realizava sua pesquisa de doutorado. O objeto, localizado na Nebulosa do Caranguejo, foi detectado como fonte de uma emissão eletromagnética, na faixa de frequências do rádio, constituída por pulsos extremamente regulares, tão regulares que chegou a se cogitar, na época, que poderiam ser provenientes de uma civilização extraterrestre.

Sabe-se agora que esses pulsos são produzidos por estrelas de nêutrons em rotação. Estas constituem o estágio terminal do ciclo evolutivo de estrelas que iniciaram suas vidas com massas da ordem de grandeza de oito a 25 massas solares. Em um dado momento de sua evolução, tais estrelas explodem como supernovas, ejetando ao meio exterior a maior parte do material que as constitui. Depois, tendo-se encerrado o processo de fusão nuclear, cuja pressão de dentro para fora contrabalançava a atração gravitacional, o material remanescente entra em colapso e começa a se compactar cada vez mais. A contração gravitacional é tanta que os elétrons se fundem com os prótons dando origem a nêutrons, altamente aglutinados. Forma-se, assim, uma estrela de nêutrons, cuja densidade é cerca de 1015 g/cm³. Isso significa que cada centímetro cúbico da estrela tem 100 milhões de toneladas de massa! Massas equivalentes a uma vez e meia a massa do Sol se comprimem em esferas com não mais de 20 quilômetros de raio.

Uma das consequências da contração é que a estrela passa a girar cada vez mais rápido. Isso se deve a uma regularidade no comportamento da matéria que recebe em física o nome de “princípio de conservação do momento angular”. O momento angular relaciona a massa, o quadrado do raio e a velocidade angular. Como a massa e o raio diminuem drasticamente, é preciso que a velocidade angular aumente muito para que o momento angular se mantenha constante. Existem pulsares extremamente rápidos, com períodos de rotação da ordem do milissegundo (10-3 s); pulsares intermediários, com períodos que vão do centésimo ao décimo de segundo (10-2 a 10-1 s); e pulsares mais lentos, com períodos de um a dez segundos (100 a 10 s).

Outra consequência da contração é que o campo magnético da estrela se intensifica tremendamente. Isso decorre do chamado “princípio de conservação de fluxo”. Uma vez que a área da superfície do astro diminui, para que o fluxo magnético se conserve, o campo deve crescer com o quadrado da razão entre o raio anterior e o raio resultante. Assim, o campo magnético das estrelas de nêutrons pode atingir valores da ordem de cem milhões (108) a um quatrilhão (1015) de Gauss. Para efeito de comparação, a magnitude do campo magnético na superfície da Terra é da ordem de 0,25 a 0,65 Gauss.

Embora os primeiros pulsares tenham sido detectados na faixa do rádio, as estrelas de nêutrons emitem em todas as frequências do espectro eletromagnético: rádio, micro-ondas, infravermelho, luz visível, ultravioleta, raios X, raios gama. Porém, só podem ser percebidas como pulsares, isto é, como objetos pulsantes, quando o eixo de seu campo magnético não coincide com o seu eixo de rotação. O motivo é que a emissão ocorre a partir dos polos magnéticos. Quando os eixos coincidem, o feixe de fótons aponta sempre na mesma direção. Quando não coincidem, o feixe de fótons varre diferentes regiões do espaço durante a rotação. Cada vez que ele aponta para o observador terrestre, isso é percebido como um pulso. O fenômeno é parecido com o dos pulsos luminosos emitidos pelos faróis que orientam os navios.

Este estudo possibilitou prever a inclinação do campo magnético do pulsar em relação ao eixo de rotação e também a evolução do campo magnético ao longo do tempo. No cenário clássico, de radiação de dipolo magnético puro, o campo deve aumentar de forma a explicar os índices de frenagem observados.

Segundo os pesquisadores, a fricção do vácuo quântico tornar-se-ia especialmente relevante em pulsares com campos magnéticos muito intensos, de 1012 a 1013 Gauss, e que, por já terem perdido bastante rotação, apresentem períodos mais longos, de um a 10 segundos.

Ao considerar a fricção do vácuo quântico, este estudo acrescentou um importante elemento ao modelo clássico de transferência de energia dos pulsares, baseado apenas na radiação eletromagnética. Mas os pesquisadores estão realizando agora um terceiro mecanismo de transferência, que é o da emissão de ondas gravitacionais.

Fonte: The Astrophysical Journal

segunda-feira, 15 de fevereiro de 2016

Detectadas ondas gravitacionais

As ondas gravitacionais, as ondulações cósmicas que distorcem o espaço-tempo, foram diretamente detectadas pela primeira vez.

fusão de dois buracos negros

© Rochester Institute of Technology (fusão de dois buracos negros)

Em um anúncio feito no dia 11 de fevereiro de 2016, os pesquisadores do Laser Interferometer Gravitational-Wave Observatory (LIGO) relataram a detecção de ondas gravitacionais. O sinal captado pelo LIGO veio da colisão de dois buracos negros, e foi detectado no dia 14 de setembro de 2015 por detectores gêmeos na Louisiana e em Washington, nos EUA. A oscilação surgiu com uma frequência de 35 ciclos por segundo (Hz), e acelerou até 250 Hz, antes de desaparecer, 0,25 segundos mais tarde. Com o aumento da frequência, dois sinais surgem juntos e em forma espiral, cujo pico foi deformado de 1,0×10-21.
O atraso de 0,007 segundos entre os sinais registados pelos detetores da LIGO foi essencial para analisar a velocidade da onda em ambos os detetores.

detecção das ondas gravitacionais

© LIGO (detecção das ondas gravitacionais)

Esta colisão cósmica enviou ondas gravitacionais que fluíram na velocidade da luz, causando ondulações no tecido do espaço-tempo, semelhante à forma como uma pedra perturba a água de uma lagoa quando é arremessada em seu centro. Os pesquisadores disseram que a colisão ocorreu a 1,3 bilhões de anos atrás, entre buracos negros com 29 e 36 vezes mais massa do que o Sol, respectivamente. Durante o ocorrido, cerca de três vezes a massa do Sol foi convertida em ondas gravitacionais em menos de um segundo, gerando uma potência de pico de aproximadamente 50 vezes a de todo o Universo visível.

"Nossa observação de ondas gravitacionais cumpre uma meta ambiciosa de cinco décadas, que era a de detectar esse fenômeno diretamente, e assim, compreender melhor o Universo, e claro, o legado de Einstein no 100º aniversário de sua Teoria da Relatividade Geral", disse David Reitze, do Instituto de Tecnologia da Califórnia e diretor executivo do LIGO, nos EUA.
A detecção das ondas gravitacionais é um marco na astronomia e astrofísica. Ao contrário de ondas de luz, as ondas gravitacionais não ficam distorcidas ou alteradas por interações com a matéria, enquanto se propagam pelo espaço, carregando a informação sobre os objetos e eventos que propiciram sua criação.

As ondas gravitacionais foram inicialmente previstas por Albert Einstein em sua famosa Teoria da Relatividade Geral de 1915. Um aspecto relevante desta teoria diz que o espaço e o tempo não são duas coisas separadas, mas sim estão ligados entre si em um único tecido: o espaço-tempo. Objetos massivos, como estrelas, esticam e curvam este tecido, assim como uma bola de boliche distorce uma lona. Isso faz com que objetos (como planetas) e até mesmo a luz percorram caminhos curvos em torno desses corpos mais massivos.

As ondas gravitacionais afetam este tecido, causando distorções no espaço-tempo. Estudos anteriores confirmaram a existência de ondas gravitacionais, que são geradas pela aceleração (ou desaceleração) de objetos massivos, mas através de métodos indiretos. A descoberta do LIGO é a primeira detecção direta desse fenômeno enigmático.

O observatório LIGO pode detectar ondas gravitacionais relativamente fortes, que são criadas por acontecimentos dramáticos, como dois buracos negros que se encontram numa colisão, ou fusões de estrelas de nêutrons. O detector também pode encontrar ondas gravitacionais geradas por uma explosão de estrela, conhecida como supernova, segundo os pesquisadores.
Distinguir essas ondulações no espaço-tempo é um grande desafio. Como uma onda gravitacional passa através da Terra, e espreme o espaço em uma direção e estende-o em outra, o LIGO observa essa curvatura do espaço-tempo usando dois detectores em forma de L.

Cada braço de cada detector tem 4 km de comprimento. Perto do ponto em que os dois braços se encontram, um impulso de luz de laser é lançado para baixo de cada braço simultaneamente. Os pulsos viajam por essas extremidades e saltam para fora, num espelho na extremidade, e depois voltam perto do ponto de partida.

Se uma onda gravitacional passa, ela vai comprimir um braço do detector e esticar o outro. Como resultado, o feixe de luz que viaja para baixo do braço esticado vai demorar um pouco mais para voltar ao ponto de partida do que o feixe de luz que viaja no braço que foi comprimido. Se o mesmo sinal é visto por ambos os detectores, os pesquisadores podem ter certeza de que o sinal é real, e não o resultado de condições ambientais em um dos locais. Gravar o sinal em dois locais diferentes também permite aos cientistas encontrar a fonte da onda gravitacional no céu por triangulação.
A mudança no comprimento de cada braço é muito menor do que a largura de um núcleo atômico. Se o detector LIGO se estendesse desde o Sol até a estrela mais próxima, a Proxima Centauri, localizada a 40,14 trilhões de km de distância, uma onda gravitacional iria encolher o detector na largura de apenas um fio de cabelo humano.

Esta não é a primeira vez que as ondas gravitacionais ganham as manchetes do mundo. Em 2014, pesquisadores usaram o telescópio BICEP2 na Antártida, e anunciaram a detecção de assinaturas de ondas gravitacionais à luz microondas que restou do Big Bang, a radiação cósmica de fundo. Mas esse resultado se desfez quando as observações do observatório espacial Planck mostrou que as alegadas assinaturas foram, provavelmente, apenas poeira espacial.

Enquanto isso, outras deduções podem ocorrer em curto prazo. Os pesquisadores do LIGO ainda estão analisando os dados recentes e planejam começar a coletar sinais novamente em julho. O reconstruído detector italiano VIRGO, um interferômetro com braços de 3 km, também irá coletar novos dados ainda este ano.

Os físicos esperam ansiosamente a próxima onda!

Fonte: Space & Physical Review Letters

quinta-feira, 14 de janeiro de 2016

Buraco negro de plasma de quarks e glúons

Por meio de simulação computacional, pesquisadores do Instituto de Física da Universidade de São Paulo, no Brasil, e do Departamento de Física da Columbia University, nos Estados Unidos, determinaram pela primeira vez, de forma quantitativa, como a carga bariônica se difunde através do plasma de quarks e glúons.

colisão de núcleos de ouro

© Brookhaven National Laboratory (colisão de núcleos de ouro)

A imagem acima mostra o evento de uma única colisão de íons de ouro, acelerados até a energia de 200 GeV (giga elétron-volts), medida pelo rastreador de vértice de silício do detector PHENIX, do Relativistic Heavy Ion Collider (RHIC).

A carga bariônica é definida pela diferença entre o número de quarks e antiquarks em um dado meio. Supõe-se que o plasma de quarks e glúons tenha predominado no Universo durante uma pequeníssima fração de segundo após o Big Bang, muito antes que o processo de expansão e consequente resfriamento do cosmo reconfigurasse várias vezes seu conteúdo material e energético, até chegar ao estágio atual. Fazendo o caminho inverso, é possível produzir o plasma de quarks e glúons a partir da matéria ordinária, aquecendo-a a temperaturas milhares de vezes superiores à mais alta temperatura registrada no Sol.

Porém, no ambiente terrestre, o patamar de energia necessário para isso só é alcançado, e por um ínfimo lapso de tempo, nas colisões relativísticas [próximas da velocidade da luz] de núcleos pesados, produzidas nos dois maiores colisores de partículas da atualidade, o Large Hadron Collider (LHC), na Europa, e o Relativistic Heavy Ion Collider (RHIC), nos Estados Unidos.

“Simulando em computador as propriedades de 250 mil buracos negros pentadimensionais, calculamos como a carga bariônica se difunde através desse plasma quando o sistema passa a conter mais matéria do que antimatéria”, disse Noronha. “Para isso, utilizamos um modelo teórico baseado na chamada ‘dualidade holográfica’, que estabelece uma surpreendente equivalência entre certas teorias quânticas definidas no espaço-tempo usual, de quatro dimensões estendidas, e a física de supercordas em um espaço-tempo curvo, de cinco dimensões estendidas.”

A “dualidade holográfica”, descoberta pelo físico argentino Juan Maldacena em 1997, é considerada uma das maiores revoluções da física teórica em anos recentes, porque possibilita que alguns fenômenos quânticos de difícil entendimento no espaço-tempo usual, de quatro dimensões, sejam estudados como hologramas de fenômenos gravitacionais mais simples ocorrendo em um espaço de cinco dimensões.

Esses fenômenos pentadimensionais são descritos pela teoria de supercordas, que é, atualmente, a principal candidata à teoria da gravitação quântica, superando o problema até agora insolúvel de compatibilizar a teoria quântica com a teoria da relatividade geral, os dois pilares da física contemporânea. Os partidários da teoria de supercordas consideram que ela poderá desempenhar um papel fundamental no entendimento de configurações em que a matéria-energia se encontra comprimida em densidades extremas, como no universo primordial ou no interior de buracos negros.

“A teoria de supercordas preconiza que as partículas fundamentais que identificamos no Universo correspondam, na verdade, a diferentes modos de vibração de minúsculas cordas existindo em um espaço-tempo de 10 dimensões. Como o Universo a que temos acesso por meio dos instrumentos de observação e dos experimentos se apresenta como um espaço-tempo com quatro dimensões estendidas [as três direções espaciais e o tempo], conjectura-se que as seis dimensões extras previstas pela teoria de supercordas devam estar compactadas em objetos extremamente reduzidos, que não podemos sondar diretamente com a tecnologia atual”, explicou o pesquisador.

Em princípio, haveria um grande número de compactações possíveis para as dimensões extras, a cada uma correspondendo um universo diferente. O Universo conhecido seria apenas um deles.

“O que Maldacena descobriu foi uma importante relação matemática entre certas teorias quânticas definidas no espaço-tempo plano usual, de quatro dimensões estendidas, e supercordas existindo em um contexto formado pela composição de um espaço-tempo curvo de cinco dimensões estendidas [chamado de ‘Anti-de-Sitter’ ou AdS] e uma hiperesfera com cinco dimensões compactadas. A relação matemática descoberta por Maldacena recebe o nome de dualidade holográfica”, informou Noronha.

Uma das principais aplicações da “dualidade holográfica” é utilizar as propriedades físicas de buracos negros definidos em um espaço AdS pentadimensional para calcular, de forma aproximada, as características do plasma de quarks e glúons, produzido experimentalmente nos dois grandes colisores.

“A expressão ‘plasma de quarks e glúons’ precisa ser melhor explicada”, ponderou o pesquisador. “A palavra ‘plasma’ designa um gás de íons, isto é, de partículas eletricamente carregadas. Ao passo que os glúons são eletricamente neutros e os quarks possuem carga elétrica fracionária (o que os distingue de todas as demais partículas, que apresentam carga elétrica inteira ou nula).

Outro aspecto bastante peculiar dos quarks e glúons é que, sob as condições habitualmente observadas na natureza, essas partículas fundamentais se encontram confinadas no interior de partículas compostas, chamadas de hádrons, como os prótons e os nêutrons, que compõem os núcleos atômicos. Quando núcleos atômicos pesados, compostos por vários prótons e nêutrons, são colididos a altíssimas energias, como ocorre no LHC e no RHIC, os quarks e os glúons são temporariamente liberados, formando o meio que, por comodidade, chamamos de plasma de quarks e glúons.”

“Esse ‘plasma’ corresponde, de fato, a gotículas de volumes minúsculos, com raios da ordem de 10-15 metros, e temperaturas altíssimas, em torno de 250 mil vezes a temperatura do centro do Sol, estimada em 107 Kelvin. De fato, essas gotículas, formadas nos grandes colisores, constituem o fluido mais perfeito, de menor tamanho e mais quente já produzido pelo ser humano. Duram apenas uma diminuta fração de segundo, antes que o resfriamento faça com que os quarks e glúons sejam novamente confinados em hádrons. Esse meio corresponderia à condição do Universo poucos instantes após o Big Bang”, descreveu Noronha.

Neste trabalho os pesquisadores utilizaram a dualidade holográfica e a simulação computacional para investigar, pela primeira vez na literatura, como a carga bariônica se difunde através do plasma de quarks e glúons. E calcularam também a condutividade associada a essa carga, além de outras grandezas observáveis, de grande importância para a caracterização física desse estado da matéria.

Um artigo descrevendo o estudo intitulado “Suppression of Baryon Diffussion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma”, assinado por Rômulo Rougemont e Jorge Noronha, da USP, e por Jacquelyn Noronha-Hostler, de Columbia, foi publicado no periódico Physical Review Letters.

Fonte: FAPESP (Agência)

quarta-feira, 26 de agosto de 2015

A natureza dos neutrinos de alta energia

A Colaboração IceCube anunciou uma nova observação de neutrinos de alta energia originários de fora do nosso Sistema Solar.

eventos de neutrino mais energéticos

© IceCube (eventos de neutrino mais energéticos e o IceCube Lab)

Este estudo, que procurou neutrinos vindos do Hemisfério Norte, confirma a sua origem cósmica bem como a presença de neutrinos extragaláticos e a intensidade da taxa de neutrinos. A primeira evidência de neutrinos astrofísicos foi anunciada pela colaboração em novembro de 2013.

"A procura por neutrinos do múon que chegam ao detector, passando pelo interior da Terra, é o modo como o IceCube faz astronomia de neutrinos e, com este estudo, prova-o," afirma Francis Halzen, pesquisador principal do IceCube e professor de física da Universidade de Wisconsin-Madison. "Não é como o CMS (Compact Muon Solenoid) ou o ATLAS (A Toroidal LHC ApparatuS), ambos do LHC (Large Hadron Collider), mas é tão perto de uma confirmação independente quanto possível para um único instrumento."

Os neutrinos são partículas subatômicas que viajam por todo o Universo quase sem serem influenciados pela matéria, apontando diretamente para as fontes de energia onde foram criados. E para os neutrinos mais energéticos, essas fontes deverão ser os ambientes mais extremos do Universo: poderosos geradores cósmicos, como buracos negros ou a explosão de estrelas gigantescas, objetos capazes de acelerar os raios cósmicos para energias mais de um milhão de vezes superiores àquelas alcançadas pelos aceleradores feitos pelo Homem, como o LHC no CERN.

"Os neutrinos cósmicos são a chave para partes ainda inexploradas do nosso Universo e poderão finalmente revelar as origens dos raios cósmicos mais energéticos," afirma Olga Botner, porta-voz da colaboração e da Universidade de Uppsala. "A descoberta de neutrinos astrofísicos aponta para o início de uma nova era na astronomia."

Os neutrinos nunca são observados diretamente, mas o IceCube é capaz de ver os subprodutos de uma interação entre um neutrino e o gelo da Antártida. Este detector com um quilômetro cúbico regista cem mil neutrinos por ano, a maioria produzidos pela interação dos raios cósmicos com a atmosfera da Terra. Bilhões de múons atmosféricos criados nas mesmas interações também deixam vestígios no IceCube. De todos estes, os pesquisadores procuram apenas algumas dúzias de neutrinos astrofísicos, que vão ampliar a nossa compreensão atual do Universo.

A pesquisa apresentada há poucos dias pela Colaboração IceCube usa uma velha estratégia para um telescópio de neutrinos: observa o Universo através da Terra, usando o nosso planeta para filtrar o grande fundo de múons atmosféricos. Entre maio de 2010 e maio de 2012, foram encontrados nos dados mais de 35.000 neutrinos. À energia mais alta, acima dos 100 TeV (teraelétrons-volt ou trilhões de elétrons-volt), a taxa medida não pode ser explicada por neutrinos produzidos na atmosfera da Terra, indicando a natureza astrofísica dos neutrinos de alta energia. A análise apresentada nesta pesquisa sugere que mais de metade dos 21 neutrinos acima dos 100 TeV têm origem cósmica.

mapa celeste dos 21 eventos mais energéticos

© IceCube (mapa celeste dos 21 eventos mais energéticos)

Esta observação independente, com uma significância de 3,7 sigma e em boa concordância com os resultados anteriores da Colaboração Icecube, também confirma a elevada taxa de neutrinos astrofísicos. Apesar dos cientistas ainda os contarem "ao punhado", os resultados do IceCube estão perto dos valores máximos com base nas fontes potenciais de raios cósmicos. A intensidade deste fluxo mostra que as fontes de raios cósmicos são geradores eficientes de neutrinos. E, portanto, estas pequenas partículas são ainda mais tidas em conta como as ferramentas perfeitas para explorar o Universo extremo.

Os neutrinos de alta energia observados pertencem a uma nova amostra de neutrinos, tendo apenas um evento em comum com os primeiros resultados anunciados em 2013, que procurou neutrinos de alta energia que tinham interagido com o gelo dentro do IceCube durante o mesmo período de obtenção de dados. A pesquisa atual focou-se apenas nos neutrinos do múon. Estes neutrinos produzem um múon quando interagem com o gelo e têm uma assinatura característica no IceCube, que chamam de "track", o que os torna fácil de identificar. É esperada a mesma forma para um múon atmosférico, mas ao observar apenas o Hemisfério Norte, os cientistas sabem que um múon detectado só pode ter sido produzido pela interação de um neutrino.

Estas "tracks" induzidas por neutrinos têm uma boa resolução de apontamento, que podem usar para localizar as suas fontes com uma precisão inferior a 1 grau. No entanto, os estudos do IceCube ainda não encontraram um número significativo de neutrinos provenientes de uma única fonte. O fluxo de neutrinos medidos pelo IceCube no Hemisfério Norte tem a mesma intensidade que o fluxo astrofísico medido no Hemisfério Sul. Isto suporta a ideia de uma grande população de fontes extragaláticas, caso contrário as fontes na Via Láctea dominariam o fluxo em torno do plano galáctico.

Além disso, esta nova amostra de neutrinos de alta energia, quando combinada com as medições anteriores do IceCube, permitem as medições mais precisas, até à data, do espectro de energia e da composição do fluxo de neutrinos extraterrestres.

O IceCube, gerido pela Colaboração Icecube, é um detector de partículas localizado perto da Estação Amundsen-Scott no Pólo Sul. Está enterrado abaixo da superfície e estende-se até uma profundidade de aproximadamente 2.500 metros. Uma rede à superfície, o IceTop, e um subdetector interno mais denso, DeepCore, melhoram significativamente as capacidades do observatório, tornando-o numa instalação multiusos.

Os resultados são a primeira confirmação independente desta descoberta e foram publicados agora na revista Physical Review Letters. E também um segundo artigo foi publicado na revista The Astrophysical Journal.

Fonte: University of Wisconsin-Madison

quinta-feira, 7 de maio de 2015

Sinal galáctico na busca da matéria escura

Essa é uma das observações mais disputadas da física. Mas logo poderá haver uma explicação para um misterioso excesso de fótons de alta energia no centro da Via Láctea.

raios γ do Centro Galáctico

© A. Mellinger/T. Linden/NASA (raios γ do Centro Galáctico)

A análise mais recente sugere que o sinal poderia vir de partícula de matéria escura com a massa necessária exata para ser encontrada no maior acelerador de partículas do mundo.
O Grande Colisor de Hádrons (LHC), localizado no laboratório CERN de física de partículas perto de Genebra, na Suíça, deve voltar a colidir prótons neste verão boreal após um hiato de dois anos. Os cientistas pretendem tornar a busca por essa partícula uma das principais metas da segunda ativação do colisor.
Uma detecção positiva esclareceria a fonte dos raios γ (gama) galácticos. Também revelaria a natureza da matéria escura, substância invisível que se acredita compor cerca de 85% da matéria do Universo, seria uma evidência, procurada há muito tempo, da supersimetria, e assim, um forte argumento para se estender o atual modelo padrão da física de partículas.
“Essa poderia ser a explicação mais promissora para o Centro Galáctico já proposta até hoje”, declara Dan Hooper, do Laboratório Nacional do Acelerador Fermi (Fermilab) em Batavia (EUA), mas adiciona que “existem outras que não estão muito atrás”.
Em 2009, Hooper e Lisa Goodenough, então aluna de pós-graduação da New York University, foram os primeiros a identificar o sinal em dados do telescópio espacial de raios gama Fermi, da Nasa. Eles propuseram que a observação era uma assinatura da matéria escura. Duas partículas de matéria escura em colisão aniquilariam uma à outra, assim como ocorre com matéria e antimatéria. A aniquilação geraria uma sucessão de partículas de vida curta que acabariam produzindo raios γ.
Mas a partícula proposta, que foi batizada de hooperon ou gooperon em homenagens aos cientistas, logo encontrou problemas com a versão favorita da supersimetria. Ainda que a extensão supersimétrica mínima do modelo padrão (MSSM) permita partículas de matéria escura com a massa estimada de hooperons, cerca de 25 a 30 gigaeletronvolts (1 GeV é aproximadamente a massa de um próton), vários experimentos já sugeriram que as partículas devem ser mais pesadas que isso. Para acomodar hooperons, a MSSM teria que ser modificada o suficiente para deixar muitos físicos desconfortáveis. “Nós precisaríamos de uma teoria completamente nova”, observa Sascha Caron, físico de partículas da Universidade Radbound Nijmegen, na Holanda, que lidera a equipe responsável pelos cálculos mais recentes.
Céticos sugeriram que o excesso de raios γ observado nos dados do Fermi tinham explicações mais simples, como emissões de estrelas de nêutrons ou resquícios de explosões estelares.
Mas no final de 2014, perceberam que os cálculos para a variação da massa de partículas de matéria escura que seriam compatíveis com as observações do Fermi eram conservadores demais. Novas estimativas do ‘ruído’ de raios γ produzido por fontes conhecidas, fornecidas pela equipe científica do Fermi e outras, permitem partículas muito mais pesadas. “O excesso pode ser explicado com uma partícula de até 200 GeV”, explica Simona Murgia, física da University of California, Irvine, e uma das principais cientistas da equipe do Fermi.
Armados com essa ideia, Caron e seus colaboradores recalcularam as previsões da teoria MSSM e encontraram outra possível explicação para o excesso, um candidato existente à matéria escura chamado de neutralino. O neutralino era pesado o suficiente para não ser excluído por experimentos anteriores, mas leve o suficiente para poder ser produzido na segunda ativação do LHC.
O modelo de Caron também permite uma previsão para a quantidade de matéria escura que deveria ter sido criada no Big Bang, que é compatível com observações da radiação cósmica de fundo, a radiação remanescente do Big Bang, realizadas pela sonda Planck, da ESA. Isso não pode ser uma coincidência, afirma ele. “Eu acho isso incrível”.
A equipe de Caron não é a única reavaliando as observações do Fermi sob a perspectiva das novas estimativas. Cálculos semelhantes, mas menos detalhados, realizados pelo físico Patrick Fox, do Fermilab, e seus colegas em novembro último também revelaram o neutralino como uma possível causa dos raios γ do Fermi. E Katherine Freese, diretora do Nordita, o Instituto Nórdico de Física Teória em Estocolmo, declara que ela e seus colaboradores calcularam que o excesso poderia ser provocado por um tipo de matéria escura que faz parte de uma teoria menos popular da supersimetria.
A resolução desses problemas pode estar logo adiante. Além de ser produzido no LHC, o neutralino também poderia estar ao alcance de experimentos subterrâneos da próxima geração, prontos a detectar partículas de matéria escura que por acaso atravessem a Terra, informa o físico Albert De Roeck. Roeck trabalha no CMS, um dos dois detectores do LHC que caçarão a matéria escura. Se essa partícula realmente for a causa dos raios γ, é possível que os sinais de matéria escura sejam observados muito em breve.

Fonte: Nature

domingo, 15 de fevereiro de 2015

Curvatura quântica da luz

A luz viajando perto de um objeto é desviada de seu caminho por causa da força da gravidade.

curvatura quântica da luz

© NASA (curvatura quântica da luz)

Para um objeto de grande massa como o Sol, este desvio é mensurável. As melhores medições até o momento mostram que a atração gravitacional do Sol desvia a luz por 0,00049º de acordo com as previsões da relatividade geral. Agora Niels Bjerrum-Bohr, do Instituto Niels Bohr, na Dinamarca, e colegas calcularam como esse desvio seria alterado quando a gravidade é descrita como um campo quântico.

Os autores descrevem a gravidade usando uma teoria de campo eficaz, uma aproximação de baixa energia de uma possível teoria quântica de campo subjacente da gravidade. Isto permitiu-lhes computar a junção de fótons com efeitos gravitacionais, formulando uma solução analítica para o problema da deflexão da luz por um objeto pesado, como o Sol ou um buraco negro de Schwarzschild. Embora a sua correção quântica predita é demasiado pequena para ser medido experimentalmente, onde o efeito da gravidade é 80 ordens de grandeza maior, eles mostram que os efeitos quânticos causam uma diferença. Esta diferença decorre do fato de que as partículas sem massa como fótons não estão mais restritas a viajar exatamente sobre geodésicas, ou seja, na relatividade geral, as linhas retas modificados pela curvatura do espaço-tempo ao longo de qualquer movimento de partículas em queda livre. Em particular, elas são previstas para dobrar de forma diferente dependendo da sua rotação.

Estas alterações do comportamento previsto pela relatividade geral denota o desvio do princípio da equivalência de Einstein. A estrutura computacional apresentada pelos autores fornece uma maneira simples de avaliar os possíveis efeitos da gravidade quântica em e outros fenômenos cosmológicos.

Fonte: Physical Review Letters

segunda-feira, 11 de agosto de 2014

A velocidade da luz e a explosão de neutrinos

O efeito da gravidade sobre os pares elétron-pósitron virtuais que se propagam através do espaço pode levar a uma violação do princípio da equivalência de Einstein, segundo cálculos de James Franson da Universidade de Maryland, Baltimore County.

remanescente da supernova SN 1987A

© Chandra (remanescente da supernova SN 1987A)

Enquanto o efeito seria pequeno demais para ser medido diretamente utilizando técnicas experimentais atuais, poderia explicar a enigmática anomalia observada durante a famosa supernova SN1987A de 1987.
Em física teórica moderna, três das quatro forças fundamentais - eletromagnetismo, a força nuclear fraca e a força nuclear forte - são descritos pela mecânica quântica. A quarta força, a gravidade, não tem atualmente uma formulação quântica e é melhor descrita pela teoria geral da relatividade de Einstein. Conciliar relatividade com a mecânica quântica é, portanto, uma área importante e ativa da física.
Uma questão em aberto para os físicos teóricos é como a gravidade age sobre um objeto quântico, como um fóton. Observações astronômicas têm mostrado repetidamente que a luz é atraída por um campo gravitacional. Tradicionalmente, este é descrito usando a relatividade geral: o campo gravitacional curva o espaço-tempo, e a luz é levemente desviada quando passa pela região curvada. Na eletrodinâmica quântica, um fóton propagando através do espaço pode ocasionalmente se aniquilar, criando um par elétron-pósitron virtual. Logo depois, o elétron e o pósitron recombinam para recriar o fóton. Se eles estão em um potencial gravitacional, em seguida, para o pouco tempo que eles existem como partículas maciças, eles sofrem o efeito da gravidade. Quando eles se recombinam, eles vão criar um fóton com uma energia que está ligeiramente deslocada e que viaja um pouco mais lento do que se não houvesse potencial gravitacional. 
Franson analisou estas duas explicações para o porquê da luz diminuir à medida que passa através de um potencial gravitacional. Ele decidiu calcular o quanto a luz deve diminuir de acordo com cada teoria, prevendo que ele iria receber a mesma resposta. No entanto, surgiu uma surpresa: as mudanças previstas na velocidade da luz não combinam, e a discrepância tem algumas consequências muito estranhas.
Franson calculou que, considerando a luz como um objeto de quântico, a mudança na velocidade de um fóton não depende da intensidade do campo gravitacional, mas do próprio potencial gravitacional. No entanto, isso leva a uma violação do princípio da equivalência de Einstein, onde a gravidade e aceleração são indistinguíveis, porque o potencial gravitacional é criado junto com a massa, enquanto que em um referencial acelerado em queda livre, não é. Portanto, pode-se distinguir a gravidade da aceleração se um fóton diminui ou não durante a criação partícula-antipartícula.
Um exemplo importante é um fóton e um neutrino propagando em paralelo através do espaço. Um neutrino não pode aniquilar e criar um par elétron-pósitron, de modo que o fóton vai abrandar mais do que o neutrino que passam por um campo gravitacional, potencialmente permitindo que o neutrino viaje mais rápido do que a luz por aquela região do espaço. No entanto, se o problema é visto em um referencial em queda livre no campo gravitacional, nem o fóton nem o neutrino desacelera em tudo, de modo que o fóton continua a viajando mais rápido do que o neutrino.
Embora a ideia de que as leis da física pode ser dependente de um quadro de referência parece sem sentido, que poderia explicar uma anomalia em 1987 quando eclodiu a supernova SN1987A. Um pulso inicial de neutrinos foi detectado 7,7 horas antes da primeira luz da SN1987a chegar à Terra. Isto foi seguido por um segundo impulso de neutrinos, que chegou cerca de três horas antes da luz da supernova. Supernovas produzem grandes quantidades de neutrinos e o intervalo de três horas entre a segunda explosão de neutrinos e a chegada da luz está de acordo com a teoria atual de como uma estrela colapsa para criar uma supernova.
Pensa-se que o primeiro pulso de neutrinos está geralmente relacionado à supernova. No entanto, a probabilidade de uma tal coincidência é estatisticamente improvável. Se os resultados do Franson estão corretos, então a diferença de 7,7 horas entre o primeiro pulso de neutrinos e com a chegada da luz poderia ser explicado pelo potencial gravitacional da Via Láctea abrandar a luz. Isso não explica por dois pulsos de neutrinos precedeu a luz, mas Franson sugere que o segundo pulso pode estar relacionado a um colapso de duas etapas da estrela.
No entanto Franson é cauteloso, insistindo que "há razões muito sérias para ser cético sobre isso e a pesquisa não tem a pretensão de que é um efeito real, só que é uma possibilidade." Ele também é pessimista sobre as perspectivas para a ideia de ser comprovada ou refutada no futuro próximo, dizendo que as chances de outra supernova tão perto são muito baixas, e outros testes possíveis atualmente não têm precisão suficiente para detectar o efeito.
Raymond Chiao, da Universidade da Califórnia, concorda com Franson que, observacional e experimentalmente, "há uma série de ressalvas que precisam ser esclarecidas", mais notavelmente, que se a interpretação hipotética do Franson sobre SN1987A estiver correta, há dois claros pulsos de neutrinos separados em 5 horas, mas pouca evidência de dois pulsos de luz correspondentes. No entanto, ele diz: "Há uma tensão conceitual profundamente arraigada entre a relatividade geral e a mecânica quântica ... Se, de fato, Franson estiver certo, que é um passo enorme, na minha opinião: é a ponta do iceberg em que a mecânica quântica está correta e a relatividade geral deve estar errada."

Fonte: New Journal of Physics