segunda-feira, 1 de maio de 2017

Detectado produção de partículas estranhas

A colaboração internacional ALICE (A Large Ion Collider Experiment) noticiou uma produção abundante de hádrons dotados de quarks estranhos em colisões próton-próton realizadas no LHC (Large Hadron Collider), o grande colisor de partículas localizado na fronteira franco-suíça.

partículas formadas em colisão de núcleos de chumbo

© CERN/LHC (partículas formadas em colisão de núcleos de chumbo)

Foi a primeira vez que estes objetos, observados com crescente frequência nas colisões de núcleos pesados (chumbo-chumbo, ouro-ouro), foram detectados em tão grande abundância também no choque de partículas tão leves quanto o próton.

O estudo teve a participação decisiva de pesquisadores brasileiros, especialmente de David Dobrigkeit Chinellato, do Instituto de Física Gleb Wataghin da Universidade Estadual de Campinas, que atuou como coordenador internacional de um dos grupos de trabalho de física do ALICE, o grupo “Light Flavour”. Chinellato é apoiado pela FAPESP por meio do projeto “Produção de estranheza em colisões Pb-Pb na energia de 5,02 TeV no ALICE”.

A produção abundante de hádrons com quarks estranhos é considerada uma espécie de assinatura do plasma de quarks e glúons, um estado extremamente quente e denso da matéria que teria existido durante uma diminuta fração de segundo após o Big Bang e que agora está sendo recriado nos dois grandes colisores de partículas da atualidade, o Large Hadron Collider (LHC), na Europa, e o Relativistic Heavy Ion Collider (RHIC), nos Estados Unidos.

“A grande novidade foi observar esta produção abundante de hádrons com quarks estranhos na colisão de sistemas tão pequenos quanto os prótons,” comentou o físico Alexandre Alarcon do Passo Suaide, do Instituto de Física da Universidade de São Paulo (USP), pesquisador principal do projeto temático “Física nuclear de altas energias no RHIC e LHC”.

A evidência de hádrons com quarks estranhos nas colisões próton-próton, veiculada agora pela colaboração ALICE, sugere que o plasma de quarks e glúons possa ser produzido também no choque destas partículas muito pequenas, e não apenas na colisão de núcleos pesados, chumbo-chumbo (no LHC) ou ouro-ouro (no RHIC), como já se admitia. Mas os pesquisadores consideram prematuro afirmar isso de maneira taxativa.

Esta cautela se justifica, entre outros motivos, pelo fato de o plasma de quarks e glúons não poder ser observado diretamente. Ele é extremamente efêmero. E, nos experimentos realizados no LHC e no RHIC, seu suposto tempo de duração é da ordem de 10-23s, o que impossibilita qualquer observação direta. O que os pesquisadores de fato observam são os objetos que se formam depois que os quarks e os glúons deixam de se movimentar livremente no plasma e voltam a ser encapsulados em hádrons. O experimento é operado a partir de uma sala de controle informatizada, localizada acima da superfície, enquanto o colisor propriamente dito, com 27 quilômetros de circunferência e quatro detectores (ATLAS, CMS, ALICE e LHCb), fica no subterrâneo, a 175 metros abaixo do nível do solo.

O conceito de “estranheza” foi proposto, nos anos 1950, por Murray Gell-Mann, Abraham Pais e Kazuhiko Nishijima, para caracterizar a propriedade que fazia com que certas partículas sobrevivessem por mais tempo do que o esperado. A estranheza, simbolizada pela letra “S”, maiúscula, é uma propriedade física, expressa por meio de um número quântico.

O conceito de quark surgiu mais tarde, já na década de 1960, proposto independentemente por Murray Gell-Mann e George Zweig. E, ao longo dos anos, vários tipos de quarks foram descobertos. Um deles recebeu o nome de “estranho” [strange, em inglês], pelo fato de sua existência oferecer uma explicação para a propriedade da estranheza. O estranho passou a ser simbolizado pela letra “s”, minúscula. É um dos seis quarks reconhecidos pelo Modelo Padrão da Física de Partículas: up [u], down [d], charm [c], strange [s], top [t] e bottom [b]. Sua massa é várias vezes maior do que as do up e do down, que compõem os prótons e os nêutrons.

Os “hádrons estranhos” são partículas maiores, que recebem este nome por conterem ao menos um quark estranho. São objetos fugazes como o Káon, o Lâmbda, o Xi e o Ômega, que se tornaram comuns nos experimentos envolvendo colisões de núcleos pesados, chumbo-chumbo e ouro-ouro.

“Desde os anos 1980, a abundância relativa de hádrons estranhos tem sido apontada como uma possível assinatura da formação do plasma de quarks e glúons em colisões centrais de núcleos pesados. O que o novo estudo mostrou foi que estes objetos também são produzidos em grande abundância em colisões próton-próton quando há uma grande multiplicidade de partículas formadas. A grande multiplicidade de partículas formadas é um indicador do alto patamar de energia alcançado no choque, aproximando-se daquilo que se observa nas colisões centrais núcleo-núcleo”, detalhou o físico Marcelo Gameiro Munhoz, coordenador do projeto temático “Física nuclear de altas energias no RHIC e LHC”.

A formação do plasma de quarks e glúons gera mecanismos que facilitam a produção subsequente de hádrons estranhos. Por isso, a detecção de hádrons estranhos pode ser considerada um indício da formação prévia do plasma de quarks e glúons. Mas poderia haver uma outra explicação, não relacionada com o plasma, para este aumento de partículas estranhas, havendo a necessidade de reinterpretar aquilo que acontece nas colisões núcleo-núcleo.

Fonte: Nature Physics

domingo, 23 de abril de 2017

Massa negativa desafia as leis da Física

Físicos criaram um fluido com "massa negativa", que acelera em direção oposta quando empurrado.

fluido com massa negativa

© Physical Review Letters (fluido com massa negativa)

A descoberta desafia a Segunda Lei de Newton, conhecida como o Princípio Fundamental da Dinâmica, que diz que quando empurrado, o objeto se acelera na mesma direção que a força aplicada nele.

Mas em teoria, matéria pode ter massa negativa, da mesma forma que uma carga elétrica pode ser positiva ou negativa. Uma massa efetiva negativa pode ser realizada em sistemas quânticos através da engenharia da relação de dispersão. Um método poderoso é fornecido pelo acoplamento spin-órbita, que está atualmente no centro de intensos esforços de pesquisa.

Uma equipe de cientistas, liderada por Peter Engels, da Washington State University (WSU), esfriou átomos de rubídio a uma temperatura pouco acima do zero absoluto (próximo de -273ºC), gerando o que é conhecido como Condensado de Bose-Einstein.

Neste estado da matéria, as partículas se comportam como ondas, se movem de forma extremamente lenta, conforme previsto pela mecânica quântica. Elas também se sincronizam e se movimentam juntas no que é conhecido como superfluido, que flui sem perder energia.

Nesta pesquisa um condensado de Bose-Einstein foi medido acoplado à órbita de spin em expansão cuja dispersão apresenta uma região de massa efetiva negativa. Os pesquisadores observaram uma variedade de fenômenos dinâmicos, incluindo a quebra da paridade e da covariância galileana, instabilidades dinâmicas e auto-aprisionamento. Os resultados experimentais são reproduzidos por uma simulação de banda única de Gross-Pitaevskii, demonstrando que as características emergentes, tais como: ondas de choque, trens solitônicos, auto-aprisionamento, entre outros, originam-se de uma dispersão modificada. Este trabalho também fornece novas informações sobre fenômenos relacionados em redes ópticas, onde a estrutura periódica subjacente muitas vezes complica sua interpretação.

Para criar as condições para a massa negativa, os pesquisadores usaram lasers para capturar os átomos de rubídio e empurrá-los para frente e para trás, mudando a forma como eles giram.

Os lasers prendem os átomos como se eles estivessem numa região com menos de 100 micrômetros de diâmetro. Neste ponto, o superfluido de rubídio tem massa normal. Mas, quando os átomos foram liberados da "armadilha do laser", o superátomo de rubídio se expande, revelando massa negativa.

Para criar as condições para a massa negativa, os pesquisadores aplicaram um segundo conjunto de lasers que empurra estes átomos em expansão de um lado para outro, mudando o modo como eles giram. Desta forma, quando alguns átomos de rubídio escorrem para fora da armadilha original rápido o suficiente, eles se comportam como se tivessem massa negativa.

"Com massa negativa, se você empurrar alguma coisa, ela acelera em sua direção," disse Michael Forbes, professor-assistente de Física da WSU. "Parece que o rubídio se choca contra uma parede invisível".

A técnica poderia ser usada para entender melhor o fenômeno, dizem os pesquisadores. "Primeiramente, nos chamou atenção o controle que temos sobre a natureza da massa negativa, sem quaisquer complicações," diz Forbes.

Este controle também fornece aos pesquisadores uma ferramenta para explorar as possíveis relações entre massa negativa e fenômenos observados no cosmos, como estrelas de nêutrons, buracos negros e energia escura.

Fonte: Physical Review Letters

quarta-feira, 1 de fevereiro de 2017

Criado hidrogênio metálico

Cientistas da Universidade de Harvard, nos Estados Unidos, criaram uma amostra de metal de hidrogênio.

hidrogênio metálico

© R. Dias/I. F. Silvera (hidrogênio metálico)

Na imagem acima o hidrogênio aparece transparente (à esquerda), opaco (no centro) e reflexivo (à direita). Esta refletividade indica que o hidrogênio foi transformado em um metal, afirmam os pesquisadores.

O hidrogênio é o elemento mais simples da tabela periódica, com um próton e um elétron. Em condições normais esses átomos tendem a se organizar aos pares em um gás, que a baixas temperaturas se condensa em líquido e, em temperaturas ainda mais baixas, em sólido.

É a primeira vez que o hidrogênio metálico, previsto em teoria pela primeira vez há cerca de 80 anos, foi desenvolvido em laboratório. O hidrogênio sólido pode existir no núcleo de planetas gigantes, como Júpiter.

A primeira menção a ele foi feita em 1935 pelos cientistas Eugene Wigner e Hillard Bell Huntington, que sugeriram que, em uma pressão de 25 gigapascals (GPa), o hidrogênio sólido se transformaria em metal. Acredita-se  que a pressão do núcleo da Terra esteja entre 330 e 360 GPa.

Na época ainda não havia conhecimento suficiente do mundo quântico para criar estas condições. A produção de hidrogênio metálico tem sido um grande desafio para a física da matéria condensada.

Os pesquisadores Thomas D. Cabot, Isaac Silvera e Ranga Dias usaram dois tipos de diamantes sintéticos para encontrar o hidrogênio sólido. Eles poliram as superfícies dos diamantes até que elas não tivessem mais defeitos, os esquentaram para retirar resíduos internos e os cobriram com uma camada de óxido de alumínio, um composto que o hidrogênio não consegue filtrar.

Em seguida, o trio de Harvard foi comprimindo o hidrogênio sólido. No início do experimento, quando a pressão estava mais baixa, o elemento ficou transparente, conforme a pressão foi aumentando, ele ficou opaco e preto. Quando uma pressão de 495 GPa foi atingida, o hidrogênio ficou brilhante, completando sua transformação em metal, ainda não se sabe se foi em um estado sólido ou líquido. O físico Alexander Goncharov, do Carnegie Institution for Science, afirmou que o material brilhante pode ser, na verdade, o óxido de alumínio usado para recobrir as pontas dos diamantes, que poderia ter sido modificado pela alta pressão.

Na pressão de 495 GPa, o hidrogênio metálico possui uma refletividade tão elevada como 0,91. Os pesquisadores ajustaram a refletância usando um modelo de elétron livre de Drude para determinar a frequência de plasma de 32,5 ± 2,1 eV numa temperatura de 5,5 kelvin, com uma densidade de portadores de elétrons correspondente de 7,7 ± 1,1 × 1023 partículas/cm3, consistente com as estimativas teóricas de densidade atômica.

Ainda há muito o que ser pesquisado, mas se o metal de hidrogênio tiver pelo menos metade das aplicações previstas em teoria, ele poderia revolucionar a tecnologia como a conhecemos hoje. O material por ser um supercondutor poderia trazer inovações em eletricidade, como a possibilidade de trens de alta velocidade funcionarem por levitação magnética.

O material poderia ser utilizado como propulsor, o que mudaria as viagens espaciais. "É necessário uma quantidade tremenda de energia para criar o metal de hidrogênio," explicou Isaac Silvera. "E se você o converter de volta para o hidrogênio molecular, toda a energia é liberada, o que poderia se transformar no tipo de propulsor mais potente já conhecido pelo homem."

Em termos de comparação, os propulsores utilizados hoje levam 450 segundos para serem acionados em um foguete; o propulsor de hidrogênio levaria 1,7 segundos para fazer a mesma coisa. Com isso, seria possível colocar foguetes em órbita em apenas um estágio em vez de dois. "Ele teria ainda cargas úteis maiores, o que seria muito importante," ressaltou Silvera.

Fonte: Science