sábado, 14 de setembro de 2013

A borboleta fractal

Após uma busca de quase 40 anos, os físicos encontraram uma prova experimental para um dos primeiros padrões fractais conhecidos da física quântica: a borboleta de Hofstadter.

a borboleta de Hofstadter

© Douglas Hofstadter (a borboleta de Hofstadter)

Batizada em homenagem a Douglas Hofstadter, autor do livro Gödel, Escher, Bach, de 1979, ganhador do Prêmio Pulitzer, o padrão descreve o comportamento de elétrons em campos magnéticos extremos.
Para capturar a borboleta, os cientistas tiveram que inovar na construção de redes.
Desde maio, vários grupos vêm publicando experimentos que procuraram o padrão usando treliças hexagonais de átomos.
Em agosto, alguns cientistas relataram que estavam tentando captar o padrão com armadilhas de laser atômico. Alguns físicos afirmam que o estudo do padrão poderia ajudar no desenvolvimento de materiais com propriedades elétricas exóticas; mas a principal razão da busca foi verificar se a borboleta de fato tem o aspecto previsto.
“De início, o conceito de Hofstadter foi bastante perturbador para muita gente”, diz Cory Dean, um físico experimental no City College de Nova York. “Agora podemos dizer que sua proposta nem era tão louca assim”.
Hofstadter, que atualmente é um cientista cognitivo na Indiana University em Bloomington, esboçou o padrão nos anos 70 quando era um estudante de pós-graduação em física. Na época já se sabia que elétrons sob a influência de um campo magnético correriam em círculos, mas Hofstadter ponderou que, em teoria, se os elétrons estivessem confinados numa estrutura atômica cristalina, seus movimentos se tornariam complexos.
À medida que o campo magnético fosse incrementado, os níveis de energia que definem o movimento dos elétrons se dividiriam sucessivamente. Quando representados em um gráfico, esses níveis de energia revelaram um padrão que parecia uma borboleta e continuaram a fazer isso mesmo quando reduzidos a escalas infinitamente pequenas.
O matemático Benoît Mandelbrot ainda não tinha popularizado o termo “fractal” para esses padrões recursivos e o mentor de Hofstadter não se convenceu. “Ele desdenhosamente chamou o padrão de aninhamento que o novato alegava ter visto de ‘mera numerologia’”, conta o cientista. “Ele até me disse que eu seria incapaz de obter um PhD para esse tipo de trabalho”. Hofstadter publicou sua descrição da borboleta em 1976 após concluir seu doutorado.
A ideia era difícil de testar.
A força do campo magnético necessário depende do espaçamento entre os átomos na estrutura hexagonal (treliça). Em materiais convencionais, em que os átomos estão separados por menos de um bilionésimo de um metro, o padrão pode surgir somente em campos da ordem de dezenas de milhares de teslas. Os melhores ímãs disponíveis só conseguem chegar a cerca de 100 teslas e apenas por uma fração de segundo.
No entanto, campos menores têm suficientes treliças com espaçamentos maiores, que podem ser criados ao se empilhar materiais em camadas. Em maio, pesquisadores relataram que haviam colocado uma única folha de grafeno, em que os átomos de carbono estão dispostos como os alvéolos de um favo de mel, em cima de uma folha de nitreto de boro hexagonal (também com estrutura de favo).
As camadas criam um padrão repetitivo mais amplo para os campos magnéticos que os hexágonos existentes em cada material, magnificando efetivamente o campo.
Depois de submeterem o material a um campo magnético, os pesquisadores mediram alterações discretas na condutividade dele, com saltos que resultam de mudanças de nível de energia de seus elétrons.
Esses resultados não foram uma detecção direta do comportamento esperado de elétrons, mas uma simulação. 
A borboleta de Hofstadter ainda não tinha sido capturada, mas havia revelado sua existência. “Encontramos um casulo”, diz Pablo Jarillo-Herrero, um físico experimental no Instituto de Tecnologia de Massachusetts (MIT) em Cambridge. “Ninguém duvida de que há uma borboleta lá dentro”.
Wolfgang Ketterle, o Prêmio Nobel de Física de 2001, também do MIT, está “caçando” a borboleta de outro modo, ao fazer com que átomos ajam como elétrons. Para fazer isso, ele congela átomos de rubídio a alguns bilionésimos de grau acima do zero absoluto e usa lasers para prendê-los em uma estrutura com cavidades ou bolsas, como os de embalagens de ovos.
Quando atingidos por um par de lasers entrecruzados extras, os átomos fluem de uma cavidade para outra, como em um túnel. A inclinação da grade permite que a gravidade direcione os átomos para caminhos que imitam os movimentos circulares de um elétron em um campo magnético, embora não haja campos magnéticos reais envolvidos.
O sistema pode monitorar o movimento de átomos individuais facilmente e deveria ser capaz de imitar um campo magnético suficientemente forte para produzir uma borboleta de Hofstadter. “Átomos frios nos darão uma enorme liberdade”, afirma Ketterle.
Mas o arranjo tem um problema: os lasers tendem a aquecer os átomos frios, limitando a capacidade de controlar as energias das partículas e revelar o padrão fractal.
Ainda assim, se o calor puder ser controlado e a borboleta simulada, esse sistema poderia ser um ponto de partida para estudar comportamentos quânticos em sólidos, como materiais que conduzem eletricidade na superfície, mas são isolantes no centro.
Dieter Jaksch, físico da University of Oxford, no Reino Unido, observou: “Espero que uma infinidade de novos fenômenos sejam detectados quando se explorar a borboleta”.

Fonte: Nature

sábado, 7 de setembro de 2013

Matéria pode ter movimento perpétuo?

O físico Frank Wilczek teve que defender suas ideias mais de uma vez durante a sua longa e célebre carreira.

cristal do tempo

© NPL (cristal do tempo)

Diz ele que seu trabalho sobre quarks, os menores blocos de construção da matéria, que lhe rendeu o Prêmio Nobel em 2004, originalmente foi considerado “pouco convencional”.
Ainda assim, Wilczek, atualmente no Instituto de Tecnologia de Massachusetts (MIT) em Cambridge, foi pego de surpresa pela severidade de um ataque à sua mais recente proposta: um tipo de dispositivo em movimento perpétuo, chamado de cristal do tempo. Patrick Bruno, um físico teórico do Laboratório Europeu de Radiação Síncrotron (ESRF, na sigla em inglês), em Grenoble, na França, alega ter demolido a ideia com uma prova matemática publicada em agosto na revista Physical Review Letters.
“Ele está em pé de guerra”, comenta Wilczek que, imperturbável, revidou com um artigo postado em 27 de agosto no servidor de pré-impressão do arXiv na qual ele propõe uma nova forma para executar fisicamente a sua concepção.
Em seu sentido mais básico, o cristal do tempo proposto por Wilczek é qualquer coisa que possa ser observada movendo-se em um padrão que se repita a intervalos regulares ao longo do tempo sem o acréscimo de energia, essencialmente um relógio que funcione para sempre sem precisar de corda. Como os átomos em um cristal comum, que se repetem a intervalos discretos no espaço, a estrutura de um cristal do tempo se repete a intervalos discretos no tempo.
Ao procurar um exemplo para apoiar sua teoria, Wilczek idealizou um anel supercondutor em seu estado de menor energia. Os elétrons podem se mover por um anel desses sem resistência, fluindo em uma corrente perpétua que normalmente é suave e constante ao longo do tempo e, portanto, não tem uma referência (pontuação) observável para a passagem do tempo.
Em um artigo publicado em outubro de 2012, Wilczek levou a ideia um passo adiante ao imaginar um anel de partículas quânticas que interagem umas com as outras e formam aglomerações. Quando colocados em movimento por um campo magnético fraco, esses aglomerados oscilariam de um modo que satisfaria os critérios para um cristal do tempo.
A dissertação de Bruno questiona a ideia de que um sistema desses realmente está em seu estado de menor energia. Ele apresenta uma prova matemática de que qualquer sistema dessa natureza precisa receber alguma energia inicial para começar a girar. Mas ele argumenta que se as partículas não tiverem a energia mínima possível elas poderiam liberar alguma para se tornarem mais estáveis, rompendo assim o padrão de repetição de um cristal do tempo.
“Meu artigo encerra o assunto sobre cristais do tempo quânticos para uma classe bastante abrangente de sistemas”, afirma Bruno.
Uma equipe de físicos experimentais sediados nos Estados Unidos e na China discorda. Tongcang Li, da University of California em Berkeley e seus colegas estão planejando criar um cristal do tempo a partir de íons dispostos em um anel. Esses planos não mudaram apesar do artigo de Bruno. “O experimento que propusemos ajudará a resolver o debate”, declara Li.
De acordo com ele, Bruno pode ter adotado uma definição rigorosa demais para um cristal do tempo. Um sistema “metaestável”, que está quase em seu estado de menor energia, não existiria para sempre dizem os pesquisadores, mas poderia durar o tempo suficiente para ser interessante, levando talvez à criação de relógios que possam funcionar por um tempo muito longo sem qualquer estímulo.
Embora relute em desistir de sua ideia original, Wilczek admite que o conceito de um cristal do tempo talvez precise evoluir. “O assunto ainda está em um estágio exploratório e pode levar algum tempo para descobrir exatamente quais definições e sistemas são mais proveitosos”, diz ele.
Enquanto Li continua trabalhando com íons, a publicação mais recente de Wilczek descreve outro esquema, talvez mais simples, para fazer um cristal do tempo. Ele começa com dois pedaços de supercondutores conectados por um isolante não-supercondutor. Esse dispositivo, chamado de “Junção Josephson”, pode criar flutuações em correntes elétricas quando se aplica uma tensão externa. Wilczek argumenta que meramente quebrar o contato entre os supercondutores poderia criar os tipos de oscilações que caracterizam um cristal do tempo. Só o tempo dirá se isso satisfará seus críticos, e aonde tudo isso poderá levar.

Fonte: Nature