terça-feira, 31 de janeiro de 2012

A influência da gravidade no positrônio

Os cientistas David Cassidy e Allen Mills, da Universidade da Califórnia, irão produzir um experimento usando átomos de positrônio.

aparelho utilizado para produção do positrônio

© UC (aparelho utilizado para produção do positrônio)

O positrônio é um átomo exótico, feito de matéria e de antimatéria: um elétron e um pósitron (anti-elétron) ligados um ao outro, mas sem um núcleo.

O pósitron é a antimatéria do elétron, tendo a mesma massa, mas com uma carga positiva. Se um pósitron se encontra com um elétron, os dois se aniquilam, emitindo dois fótons de raios gama.

O que os dois físicos fizeram foi separar ligeiramente o pósitron do elétron em um átomo de positrônio, de forma que essa partícula instável possa resistir à aniquilação por um tempo suficiente para seja possível fazer experiências com ele.

"Usando lasers, nós excitamos o positrônio para aquilo que é conhecido como estado de Rydberg, que torna muito fraca a coesão do átomo, com o elétron e o pósitron muito distantes um do outro," explica Cassidy.

Isso evita que os dois se destruam, dando tempo para que os cientistas façam os experimentos para estudar o comportamento da antimatéria em relação à gravidade.

No estado de Rydberg, o tempo de vida do positrônio aumenta por um fator que varia de 10 a 100.

Mas isto ainda não é suficiente, pois provavelmente são necessários de um fator de 10.000.

"Agora nós pretendemos usar essa técnica para dar um elevado momento angular para os átomos de Rydberg. Isso tornará ainda mais difícil para que os átomos decaiam, e eles poderão viver por até 10 milissegundos," explica Cassidy.

Então, finalmente será possível testar a influência da gravidade sobre a antimatéria, o que será feito observando o movimento do pósitron para ver se a gravidade está curvando esse movimento.

"Se nós descobrirmos que a antimatéria e a matéria não se comportam da mesma forma, será algo muito chocante para o mundo da física," diz o cientista.

A física atual considera que matéria e antimatéria se comportam basicamente do mesmo jeito.

"Esse pressuposto leva à consideração de que as duas deveriam ter sido criadas em quantidades iguais no Big Bang. Mas nós não vemos muita antimatéria no Universo," diz Cassidy.

Se a matéria atrai a antimatéria, então o Universo poderia ter desaparecido em um flash de raios gama logo depois de sua criação. Mas se a antimatéria "cai para cima", ou seja, se possui uma anti-gravidade, algo diferente poderia ter acontecido.

Ou seja, um comportamento desigual entre matéria e antimatéria poderia ser muito relevante, mas também poderia abrir caminhos para explicar a inexistência da antimatéria no Universo atual.

Fonte: Physical Review Letters

quinta-feira, 26 de janeiro de 2012

Criado primeiro laser de raios X atômico

Uma equipe alemã usou o mesmo laboratório que criou o laser de raios X para gerar o primeiro laser de raios X atômico, ou seja, emitido a partir do bombardeamento de átomos com raios X muito poderosos.

laser de raios X atômico

© SLAC (laser de raios X atômico)

A equipe do Grupo de Estudos Avançados do Instituto Max Planck usou o LCLS (Linac Coherent Light Source), uma fonte de raios X recém-inaugurada na Universidade de Stanford, nos Estados Unidos.

Os pulsos de raios X, cada um cerca de um bilhão de vezes mais intenso do que qualquer outro disponível anteriormente, arrancaram elétrons das camadas internas de átomos do gás nobre neônio, preso no interior de uma cápsula.

Quando outros elétrons saltam de suas camadas mais externas para preencher as lacunas, cerca de 1 átomo em cada 50 responde emitindo um fóton na faixa dos raios X, com um comprimento de onda extremamente curto.

Esses raios X secundários foram então "estimulados" na vizinhança de outros átomos de neon para que novos pulsos ultra-curtos de raios X fossem gerados. Isso criou um efeito em cascata que amplificou a luz de raios X secundária cerca de 200 milhões de vezes.

Como os pulsos assim emitidos são coerentes, a emissão forma um laser de raio X extremamente puro.

Esse novo tipo de laser pode ser aplicado para identificar os detalhes das reações químicas ou acompanhar moléculas biológicas em atividade.

Embora o laser de raios X anunciado anteriormente e o novo laser de raios X atômico sejam ambos lasers, eles emitem a luz de forma diferente e com características diferentes.

O LCLS arremessa elétrons de alta energia através de campos magnéticos alternados, gerando pulsos de raios X muito brilhantes e muito mais potentes.

Já o novo laser de raios X atômico, que havia sido previsto na teoria em 1967, tem apenas um oitavo do comprimento de onda e sua cor é muito mais pura.

Essas qualidades vão permitir que ele distinga detalhes ainda não conhecidos de reações químicas muito rápidas, como as da fotossíntese.

O laser de raio X atômico é o mais potente já feito até agora, capaz de esquentar a matéria até cerca de 2 milhões de graus Celsius, mais quente do que a coroa do Sol!

Fonte: Nature

sexta-feira, 13 de janeiro de 2012

Menor unidade de armazenamento magnético

Cientistas da IBM e do instituto de pesquisas alemão CFEL (Center for Free-Electron Laser) construíram atualmente a menor unidade de armazenamento magnético de dados.

leitura dos átomos com um microscópio eletrônico

© S. Loth/CFEL (leitura dos átomos com um microscópio eletrônico)

É uma unidade de armazenamento antiferromagnética, um tipo especial de magnetismo que foi usado agora pela primeira vez para armazenar dados.

A estrutura usa apenas 12 átomos por bit, comprimindo um byte inteiro (8 bits) em 96 átomos.

Para se ter uma ideia dessas dimensões, basta ver que um disco rígido moderno usa mais de meio bilhão de átomos por byte.

O feito foi divulgado apenas alguns dias depois que uma outra equipe descobriu que os chips de silício podem ser miniaturizados até a escala atômica.

A unidade armazenamento de dados nanométrica foi construída átomo por átomo, com a ajuda de um microscópio de varredura por tunelamento STM (Scanning Tunneling Microscope).

Os pesquisadores construíram padrões regulares de átomos de ferro, alinhando-os em fileiras de seis átomos cada. Duas linhas são suficientes para armazenar um bit. Um byte, por sua vez, é composto por oito pares de linhas de átomos. O byte inteiro ocupa uma área de 4 por 16 nanômetros.

"Isso corresponde a uma densidade de armazenamento que é 100 vezes maior em comparação com um disco rígido moderno," explica Sebastian Loth, do CFEL, responsável pela construção desses bits e bytes atômicos.

E é também 160 vezes mais denso do que uma memória flash, 417 vezes mais do que uma memória DRAM e 10.000 vezes mais denso do que uma SRAM.

Os dados são gravados e lidos com a ajuda do microscópio eletrônico.

Os pares de linhas de átomos têm dois estados magnéticos possíveis, representando os valores 0 e 1 de um bit clássico.

Um pulso elétrico emitido pela ponta do STM inverte a configuração magnética de um estado para o outro, fazendo a gravação. Um pulso mais fraco permite ler a configuração.

Os nanomagnetos são estáveis apenas a uma temperatura de -268º C (5 Kelvin).

Apesar disso, os pesquisadores esperam que conjuntos de cerca de 200 átomos sejam estáveis a temperatura ambiente.

De qualquer forma, ainda vai demorar algum tempo antes que ímãs atômicos possam ser usados de forma prática no armazenamento de dados.

Pela primeira vez, os pesquisadores conseguiram empregar uma forma especial de magnetismo, o antiferromagnetismo, para o armazenamento de dados.

Diferente do que ocorre no ferromagnetismo, que é usado nos discos rígidos convencionais, no material antiferromagnético os spins dos átomos vizinhos são alinhados em posições opostas, o que torna o material magneticamente neutro em macroescala.

Isto significa que as linhas de átomos antiferromagnéticas podem ser colocadas muito mais próximas umas das outras, sem interferir magneticamente entre si; os bits foram colocados a apenas um nanômetro de distância uns dos outros.

Ao contrário dos materiais ferromagnéticos, os materiais antiferromagnéticos são relativamente insensíveis a campos magnéticos, permitindo que as informações sejam guardadas de forma mais densa.

Neste experimento, a equipe não apenas construiu a menor unidade de armazenamento magnético de dados, como também criou uma plataforma de testes ideal para a transição da física clássica para a física quântica.

Como é que um ímã se comporta nesta fronteira?

Fonte: Science

quinta-feira, 5 de janeiro de 2012

Lei de Ohm em escala atômica

Uma nova técnica para a incorporação de fios em escala atômica dentro de cristais de silício, revelou que a lei de Ohm pode ser considerada verdadeirs para condutores com apenas quatro átomos de espessura e um átomo de altura.

microscópio por tunelamento mostra um fio em escala atômica

© Bent Weber (microscópio mostra fio em escala atômica)

O resultado é uma surpresa, porque a sabedoria convencional sugere que os efeitos quânticos devem causar grandes desvios da lei de Ohm para tal fios minúsculos. Paradoxalmente, os pesquisadores esperam que a descoberta venha ajudar no desenvolvimento de computadores quânticos.
O tamanho dos transistores e outros dispositivos estão se aproximando da escala atômica nos chips baseados em silício. Além dos desafios tecnológicos na fabricação de novos componentes, muitos físicos estão preocupados que a imprecisão inerente à mecânica quântica, em breve tornarão as leis clássicas aplicadas aos dispositivos eletrônicos estarão obsoletas.
Para investigar a condução na escala atômica, Michelle Simmons, Bent Weber e seus colegas da Universidade de New South Wales na Austrália, desenvolveram um método que usa átomos de fósforo que são incorporados atomicamente em finas regiões dentro de um cristal de silício. O fósforo tem um elétron a mais em sua camada externa do que o silício, e se um átomo de silício é substituído por um átomo de fósforo (um processo chamado de p-doping), ele doa um elétron livre para o cristal, aumentando assim a condutividade da região dopada.
A equipe de Simmons usa a ponta de um microscópio de varredura por sonda para criar um canal no silício através da remoção de camadas de átomos. A superfície é então exposta ao gás de fósforo, seguido pela deposição de átomos de silício. O resultado é uma cadeia de átomos de fósforo incorporado dentro de um cristal de silício - um fio de forma atômica. A equipe descobriu que a resistividade dos fios foi constante até em escala atômica. Isto significa que a resistência de um fio é proporcional ao seu comprimento e inversamente proporcional à sua área, assim como você esperaria da lei de Ohm!
As técnicas usadas para criar os fios não podem atualmente ser implantadas em processos industriais, mas acredita-se que é uma demonstração importante de que a miniaturização da eletrônica clássica pode continuar por vários anos. Empresas como a Intel tem se preocupado em fazer seus dispositivos tão pequenos que tornam a mecânica quântica evidente em seu comportamento. O comprimento de porta do transistor atualmente são cerca de 22 nm, que é cerca de 100 vezes o espaçamento dos átomos de silício individual.

O grupo de Simmons, no entanto, não está interessado na eletrônica convencional e em vez disso está trabalhando para o desenvolvimento de computadores quânticos. A equipe espera usar átomos de fósforo individuais como bit quântico, ou qubits.

"Cinco anos atrás, havia muitas barreiras potenciais para o desenvolvimento computador quântico baseado no fósforo. No momento eu acho que o grande desafio para a computação quântica é fazer um sistema escalável. Certamente esses fios são muito úteis para esse objetivo ", diz Simmons.

Fonte: Science

segunda-feira, 2 de janeiro de 2012

Sistema quântico é meio som e meio matéria

Físicos estão propondo um experimento para observar uma nova entidade quântica, um híbrido de um elétron e uma vibração quântica da rede atômica de um cristal.

fóniton

© C. Tahan/Laboratory for Physical Sciences (fóniton)

Na imagem acima as setas brancas descrevem um fónon, um quantum de som, em termos dos efeitos de deslocamento que ele induz sobre os átomos da rede atômica de um cristal.

As cores mostram o estado quântico de um elétron "doador", pertencente a um átomo de fósforo, em termos da probabilidade da presença do elétron em qualquer ponto.

Segundo a nova teoria, esses dois estados se conectam para formar um híbrido, um fóniton, um sistema quântico artificial resultado de um fónon e um elétron, ou seja, um fóniton é meio som e meio matéria.

O híbrido que poderá ser encontrado em uma nanoestrutura cristalina  poderá ser útil nas pesquisas dos computadores quânticos.

A estrutura quântica poderá ainda funcionar como um sensor magnético, eventualmente mais preciso do que aquele proposto para o microscópio feito de diamante.

"O fóniton pode melhorar as ferramentas atuais de manipulação das vibrações quantizadas em sistemas mecânicos em nanoescala, ajudando-nos a entender a natureza do som e do calor, além de servir como componente básico em novos sistemas quânticos artificiais em dimensões macroscópicas", propõe o professor Charles Tahan, da Universidade de Maryland, nos Estados Unidos,

Tahan e seus colegas afirmam que o fóniton poderá ser encontrado em uma pastilha de silício dopada com fósforo. Cada átomo de fósforo substitui um átomo de silício, mas fica com um elétron sobrando, que pode ser compartilhado.

Se a estrutura for comprimida ou esticada na intensidade correta, o estado fundamental e o estado de mais baixa energia desse elétron terão uma discrepância de apenas alguns meV (milielétron-volts).

Com isso, um fónon será capaz de forçá-lo a mudar de nível, e o elétron poderá emitir um fónon similar quando retornar ao seu estado fundamental.

Mas, para gerar o novo híbrido, é necessário manter o fónon que chega e o elétron doador acoplados por um longo período, dentro de uma coluna do material feita com camadas de silício e germânio.

Como as redes atômicas do silício e do germânio não coincidem perfeitamente, isso gerará uma tensão permanente no silício. Segundo a teoria, isso será suficiente para produzir um fóniton que sobreviva por alguns milissegundos.

Fonte: Physical Review Letters