quarta-feira, 25 de agosto de 2010

Teoria sobre moléculas que piscam

O físico Boldizsár Jankó e seus colegas da Universidade de Notre Dame, nos Estados Unidos, finalmente descobriram a fonte de um dos grandes mistérios da físico-química: moléculas que cintilam.
pontos quânticos e fluorescência
© Boldizsár Jankó (pontos quânticos e fluorescência)
Há mais de um século, o físico Neils Bohr, um dos pais da mecânica quântica, previu os chamados saltos quânticos. Sua teoria diz que os elétrons não se moviam suavemente para cima e para baixo em relação ao núcleo do átomo. Em vez disso, eles ocupariam órbitas bem determinadas, e só se movimentariam entre elas dando saltos quânticos, eventualmente emitindo luz quando o salto quântico os levasse para órbitas de menor energia.
Apesar dessa ideia ter sido altamente controversa nos tempo de Bohr, ela passou a ser aceita pelos físicos e foi finalmente observada experimentalmente em 1980. Mais recentemente, com o desenvolvimento de técnicas de imageamento capazes de filmar moléculas, foi possível observar saltos semelhantes em moléculas individuais.
Durante os experimentos, estes saltos quânticos puderam ser vistos como interrupções discretas na emissão de luz contínua de algumas moléculas, revelando um fenômeno que passou a ser conhecido como intermitência da fluorescência.
No entanto, embora alguns casos dos pisca-piscas moleculares possam ser diretamente atribuídos aos saltos quânticos originais de Bohr, há um número muito maior de casos onde a intermitência da fluorescência não segue as previsões da teoria.
E são casos de grande importância não apenas para a ciência, mas também para a tecnologia: proteínas fluorescentes, largamente utilizadas em biomedicina, moléculas captadoras de luz, importantes tanto para a fotossíntese quanto para as células solares, e, mais recentemente, estruturas inorgânicas criadas pela nanotecnologia, são alguns exemplos.
Como o fenômeno das moléculas piscantes não se enquadrava na teoria da mecânica quântica, os físicos consideraram por muito tempo que o fato de as moléculas "ligarem" e "desligarem" sua fluorescência eram fenômenos isolados, não relacionados um com o outro.
Até que, em 2007, o físico argentino Fernando Stefani, da Universidade de Buenos Aires, publicou um trabalho no qual ele demonstrava indícios de uma estreita correlação entre o ligar e o desligar dessas estrelas moleculares. Mas os pesquisadores continuaram sem um modelo teórico capaz de explicar essas correlações.
Agora, Jankó e seu grupo finalmente desenvolveram um modelo que explica os fenômenos de intermitência da fluorescência e que confirma o que Stefani observou experimentalmente. Ou seja, o acender e o apagar das moléculas fluorescentes são mesmo oriundos de um mesmo fenômeno. Se o processo de intermitência das moléculas puder ser controlado, então a emissão de luz dos pontos quânticos também poderá.
nanofios semicondutores e fluorescência
© Boldizsár Jankó (nanofios semicondutores e fluorescência)
Esses fundamentos científicos poderão ser a base para a aplicação nos nanofios, usados para gerar energia a partir do movimento; para a geração de imagens precisas de células cancerígenas individuais e de imagens em tempo real de uma infecção viral, como o HIV, dentro de uma célula; e também de uma nova geração de "telas quânticas" superbrilhantes para computadores, TVs, telefones celulares e outros aparelhos eletrônicos; e mesmo de novas técnicas de iluminação ambiente para residências e escritórios.
Fonte: Nano Letters

sexta-feira, 20 de agosto de 2010

Laser poderá criar matéria do vácuo

O princípio de incerteza de Heisenberg, um dos pilares da mecânica quântica, implica que nenhum espaço pode estar inteiramente vazio. De fato, e para desespero final dos materialistas, a ciência já demonstrou que a matéria é resultado das flutuações do vácuo quântico.
  Super Laser
© ELI (ilustração do Extreme Light Infrastructure)
É desse vácuo quântico que nunca é vazio que emerge a matéria. Flutuações aleatórias do vácuo quântico geram constantemente uma multiplicidade de partículas, as chamadas partículas virtuais, entre elas elétrons e pósitrons.
Elétrons são bem conhecidos, deram nome à eletrônica. Os pósitrons também já estão sendo úteis na maioria dos laboratórios clínicos e hospitais, nos famosos exames de tomografia por emissão de pósitrons (PET-Scan).
Os pósitrons são partículas de antimatéria, mais especificamente, são antielétrons. Como elétrons e pósitrons surgem aleatoriamente do vácuo quântico, eles se encontram e se aniquilam quase com a mesma rapidez com que surgem. E esse equilíbrio de matéria e antimatéria garante que não fique jorrando matéria do nada o tempo todo.
O que os físicos querem fazer agora é tornar reais essas partículas virtuais, fazê-las romper o limiar de sua vida efêmera e trazê-las à existência real.
A possibilidade de que isso aconteça foi prevista por Fritz Sauter, em 1931. Segundo ele, um campo elétrico forte o suficiente pode transformar as partículas virtuais em partículas reais de tal forma que possam ser detectadas.
Alexander Fedotov e seus colegas da Rússia, França e Alemanha, acreditam que o experimento, finalmente, começará ser viabilizado por volta de 2015, quando será inaugurada a primeira etapa do Extreme Light Infrastructure (ELI). A seguir o gráfico mostra a intensidade em W/cm² nos últimos 50 anos.
intensidade do ELI© ELI (intensidade do ELI)
O ELI, um projeto conjunto de 13 países europeus, será o laser de maior potência já construído, cerca de seis vezes mais forte do que os mais fortes atualmente. Ele deverá gerar pulsos ultra curtos de radiação de alta energia, cerca de 100 GeV, suficientes para fazer com que partículas acelerem até próximo da velocidade da luz.
Fedotov e seus colegas acreditam que o ELI será suficiente para gerar 1026 Watts por centímetro quadrado. Segundo seus cálculos, isso será o bastante para dar vida às partículas virtuais.
Em 1997, uma equipe do acelerador SLAC, da Universidade de Stanford, nos Estados Unidos, conseguiu criar pares de elétrons-pósitrons. Mas a potência do ELI poderá permitir uma reação em cadeia, criando os pares aos milhões.
produção de pares elétrons-pósitrons
© ELI (esquema da produção de pares elétrons-pósitrons)
Segundo Fedotov e seus colegas, o primeiro par de elétron-pósitron criado será acelerado pelo laser, gerando luz. Estes fótons, juntamente com os demais fótons do laser, vão criar mais pares, que gerarão mais fótons para se juntar ao laser, e assim por diante, fazendo finalmente a matéria jorrar do nada. Ou melhor, jorrar do vácuo quântico.
Enquanto esperam até que os engenheiros façam o seu trabalho, o físicos continuarão procurando pela quarta propriedade do elétron, que também poderá lançar alguns fótons sobre o paradeiro de toda a antimatéria que teria sido criada no Big Bang. Ou sonhando com o super colisor de partículas linear, que deverá ser o sucessor do LHC, e que promete não apenas responder a algumas dessas questões imateriais, como lançar outras exponencialmente mais impensáveis.
Fonte: Physical Review Letters

terça-feira, 17 de agosto de 2010

Um buraco quântico deixado por elétron

Físicos do Instituto Max Planck de Óptica Quântica, na Alemanha, já bateram o recorde mundial de menor tempo já medido e recentemente desbancaram uma teoria de um século, mostrando que o efeito fotoelétrico tem um retardamento temporal devido a uma interação entre os elétrons.
image
© Nature (espectro de absorção dos íons de criptônio)
Agora, foi observado pela primeira vez o que ocorre dentro de um "buraco quântico", o "vazio" deixado no átomo quando um único elétron de sua camada de valência é ejetado.
Os movimentos dos elétrons em suas órbitas atômicas duram apenas alguns poucos attossegundos (um bilionésimo de um bilionésimo de segundos). Mas o que exatamente essas partículas elementares fazem na "atmosfera dos átomos" é algo ainda em grande parte desconhecido.
O que é bem claro é que não se pode determinar o momento e a localização de uma partícula quântica, como o elétron, ao mesmo tempo. Por isto, o movimento dessas partículas elementares é descrito em termos de uma nuvem de elétrons, chamada "densidade probabilística das partículas".
E esta nuvem de elétrons está sujeita a uma rápida pulsação quando sofre uma excitação, com a incidência de um fóton.
O que os cientistas fizeram agora foi observar o movimento da nuvem de elétrons quando um dos elétrons no átomo é ejetado por um pulso de luz.
O experimento é um prosseguimento do estudo anterior, que determinou que um elétron excitado por um fóton, o princípio de funcionamento das células solares, demora 20 attossegundos para deixar o átomo.
Desta vez, a equipe do Dr. Ferenc Krausz usou pulsos de luz de 100 attossegundos para observar o que acontece no local exato de um átomo do gás nobre criptônio onde um elétron é expulso de sua órbita por um pulso de luz.
Quando o pulso de laser arranca um elétron, o átomo se torna um íon, com carga positiva. No momento em que o elétron deixa o átomo, cria-se uma lacuna, com carga positiva, dentro do íon. Do ponto de vista da mecânica quântica, esse espaço livre continua a pulsar dentro do átomo.
image
© Nature (movimento da lacuna positiva deixada pelo elétron)
Os que os físicos conseguiram fazer agora foi observar diretamente esta pulsação, criando uma fotografia virtual do buraco quântico.
O experimento demonstrou que a posição da lacuna dentro do íon, ou seja, a localização da carga positiva, move-se para trás e para frente, variando entre uma forma alongada e uma forma compacta, em ciclos com uma duração de 6 femtossegundos (milésima parte do attossegundo).
"Nossas experiências nos deram uma visão única em tempo real desse microcosmo," comenta o Dr. Krausz. "Usando flashes de luz de attossegundos, nós registramos pela primeira vez processos da mecânica quântica dentro de um átomo ionizado."
O feito ajuda a compreender a dinâmica das partículas elementares fora do núcleo atômico, que é mais extensamente estudado em experimentos como o LHC.
Em sistemas mais complexos, em nível molecular, este tipo de dinâmica é o principal responsável pela sequência dos processos químicos e biológicos.
Um entendimento mais preciso dessa dinâmica poderá abrir as portas para o entendimento de fenômenos que vão da origem microscópica de doenças atualmente incuráveis até a aceleração gradual da velocidade de processamento dos computadores.
Fonte: Nature

sábado, 7 de agosto de 2010

Fenômenos quânticos em sistemas mecânicos

Um acoplamento de espelhos que emitem fótons através da luz e um ressonador micromecânico que é forte o bastante para transferir efeitos quânticos para o mundo macroscópico pode caracterizar esta interação.
levitação óptica
© Nature (oscilação optomecânica)
A física quântica é cheia de paradoxos e comportamentos bizarros, como gatos em caixas que estão vivos e mortos ao mesmo tempo e partículas que interagem instantaneamente mesmo quando uma delas foi para o outro lado da galáxia.
O entrelaçamento de partículas e a superposição quântica são fenômenos bem conhecidos e explorados pelos pesquisadores que estão tentando construir computadores quânticos. Uma superposição quântica é um estado no qual uma partícula, como um fóton ou um átomo, existe simultaneamente em dois locais, somente quando se tenta detectar sua posição, sua função de onda colapsa e uma das posições é estabelecida.
O entrelaçamento quântico, algumas vezes chamado de emaranhamento, foi o que Albert Einstein chamou de "ação fantasmagórica à distância", ele permite que as partículas compartilhem informações instantaneamente, mesmo estando fisicamente separadas por grandes distâncias.
E será que essas leis da física quântica podem de alguma forma serem aplicadas aos objetos em escala humana, ou pelo menos a objetos que possam ser vistos a olho nu? Esta é uma questão que os próprios físicos têm se perguntado desde o início da formulação da teoria.
interação quântica
© Nature (interação quântica)
O estudo do comportamento quântico em pequenos sistemas mecânicos tem como prioridade fundamental a eliminação de interferências nas interações entre o sistema e o seu ambiente. As vibrações térmicas aleatórias do ambiente são facilmente transferidas para o objeto mecânico, destruindo suas frágeis propriedades quânticas.
Para resolver este problema, pesquisadores do mundo todo começaram a usar dispositivos criogênicos, onde o ambiente é resfriado a uma temperatura muito baixa, reduzindo a magnitude dessas vibrações aleatórias, e a isolar os sistemas quânticos em armadilhas magnéticas para que o sistema não tenha nenhum contato direto com o ambiente externo.
Recentemente, as tecnologias de micro e nanofabricação estão permitindo que os cientistas façam experimentos de acoplamento entre o mundo quântico e mundo mais trivial.
As pesquisas começaram com pequenos objetos que oscilam mecanicamente, chamados ressonadores, que se comportam como se fossem pêndulos. Como existem ressonadores com tamanhos que vão desde vários centímetros até algumas poucas centenas de nanômetros, eles são os maiores objetos em que se pode testar a teoria quântica.
O objetivo das pesquisas eram transferir as propriedades de um sistema quântico elementar constituído de um átomo, um elétron ou um fóton para o objeto mecânico macroscópico. Para isso, são necessárias duas condições: primeiro, o ressonador mecânico deve ser resfriado até próximo do zero absoluto; segundo, a força entre o ressonador mecânico e o átomo, elétron ou fóton deve ser forte o suficiente para superar o decaimento natural das propriedades quânticas, tecnicamente chamado decoerência.
Para gerar o acoplamento forte necessário é utilizado um princípio bem conhecido na óptica quântica: um ressonador óptico. Como a reflexão de um único fóton através de um espelho não gera a força suficiente para acionar o ressonador mecânico, os fótons são injetados entre dois espelhos paralelos, onde ficam refletindo entre um e outro até adquirirem energia suficiente para escapar através de um dos espelhos, que não é um refletor perfeito.
Com o número suficiente de fótons, capazes de superar a tendência natural à decoerência, a troca de energia entre a luz e o oscilador mecânico acontece mais rapidamente do que o tempo que os fótons precisam para sair da armadilha óptica formada pelos dois espelhos; com isso, o movimento da luz e do ressonador mecânico entram em sintonia, ficando acoplados.
Os efeitos do mundo quântico parecem também vazar para o mundo macro, porque a oscilação não é nem puramente mecânica e nem puramente óptica, é um híbrido entre as duas, uma oscilação optomecânica.
Com aplicações deste tipo é possível testar até que ponto as leis da física quântica são válidas no mundo macro.
Fonte: Nature

terça-feira, 3 de agosto de 2010

Técnica para medir rotação da luz

A luz pode ter um "momento angular orbital", uma espécie de rotação, mas que se parece mais com um planeta orbitando ao redor do Sol do que girando sobre seu próprio eixo.
rotação da luz com difração triangular
© U. F. de Alagoas (rotação da luz com difração triangular)
Medir essa propriedade é complicado, mas pesquisadores brasileiros mostram que dirigir um feixe luminoso através de um buraco triangular cria uma matriz triangular de pontos que indica diretamente a dinâmica orbital angular desse feixe.
A técnica, simples e elegante, é uma ferramenta importante para explorar uma propriedade incomum da luz, que poderá no futuro ser usada para codificar informações quânticas.
Quando um feixe de luz possui momento angular, esse momento angular pode ter dois elementos. O momentum angular "spin" corresponde à polarização circular da luz para a direita ou para esquerda, o que significa que a direção do campo elétrico gira no sentido horário ou anti-horário conforme a luz se move para a frente.
O momento angular orbital ocorre quando a direção do campo elétrico varia no interior do feixe. Por exemplo, imagine medir a direção do campo elétrico em cada ponto ao redor de um feixe de luz de grande diâmetro. Ele pode apontar para cima, para a direita, para baixo, ou para a esquerda.
Este feixe pode ter uma unidade de momento angular orbital, uma "carga topológica" de um. O campo de um feixe de carga dois poderia dar duas rotações completas conforme você se move ao redor de seu contorno.
Os pesquisadores esperam aproveitar esta propriedade para transportar informações com a luz, exatamente como eles já fazem com a polarização, pois enquanto cada fóton tem apenas dois estados de spin distintos, há potencialmente infinitos estados do momento angular orbital. O problema é que até agora não havia um método de distinguir os diversos estados do momento angular orbital de forma eficiente.
Os físicos já haviam descoberto como gerar feixes que possuam momento angular orbital e usá-los para exercer torque sobre partículas, movimentando-as.
Mas Jandir Miguel Hickmann e seus colegas da Universidade Federal de Alagoas, em Maceió, afirmam que há uma quantidade muito pequena de pesquisas que exploram o que acontece quando esses raios de luz passam por aberturas muito pequenas.
Esses experimentos de difração geram padrões de pontos que os físicos vêm usando há muito tempo para analisar as propriedades da luz comum, mas as técnicas para medir o momento angular orbital são poucas e mais complicadas.
Quando Hickmann e seus colegas simularam a difração de feixes de luz passando através de furos de variados formatos, eles descobriram que o uso de um triângulo isósceles traz um benefício inesperado: "Você pode simplesmente contar os pontos para descobrir a carga topológica". Os pesquisadores também verificaram esta previsão experimentalmente.
A equipe calculou e observou que, uma vez que o feixe está centrado no furo, ele gera um padrão incomum: uma rede triangular de pontos. O brilho de cada ponto individual depende das contribuições combinadas da luz a partir de diferentes locais no buraco triangular.
Os cálculos preveem que os pontos mais brilhantes formam um triângulo cujo tamanho (o número de pontos em cada um dos seus lados) é uma unidade maior do que a magnitude da carga topológica.
Além disso, o padrão luminoso triangular é girado em 60 graus em qualquer direção em relação à abertura, com a direção dependendo do sinal da carga (o sentido de rotação da luz). Assim, a abertura triangular representa uma maneira fácil de medir a magnitude e o sinal do momento angular orbital.
Miles Padgett, da Universidade de Glasgow, na Escócia, comentando o artigo dos brasileiros, afirmou que "Foi uma surpresa, pelo menos para mim, que haja uma relação tão simples e bonita" entre o número de pontos difratados, a orientação do padrão, a magnitude e o sinal da carga topológica.
Fonte: Physical Review Letters

segunda-feira, 2 de agosto de 2010

Busca da quarta propriedade do elétron

Os elétrons são partículas elementares com carga negativa que formam camadas em torno dos átomos e dos íons. Esta definição poderá exigir uma complementação.
antimatéria
© Revista Física (ilustração da quarta propriedade do elétron)
Muitos físicos acreditam que os elétrons têm um momento de dipolo elétrico permanente. Como os pólos magnéticos norte e sul de um ímã, existem também dois pólos elétricos. Um momento de dipolo elétrico geralmente é criado quando cargas positivas e negativas são separadas espacialmente. No caso dos elétrons, a situação é muito mais complicada porque os elétrons não deveriam ter realmente qualquer dimensão espacial.
Apesar disso, muitas teorias físicas vão além do Modelo Padrão da física de partículas elementares e de fato baseiam-se na existência de um momento de dipolo. E não são teorias quaisquer, são teorias que tentam explicar como o Universo foi criado.
Segundo as teorias mais aceitas atualmente, há cerca de 13,7 bilhões de anos, o Big Bang teria criado quantidades iguais de matéria e de antimatéria.
Mas matéria e antimatéria destroem-se mutuamente. Logo, nada deveria ter permanecido. Na realidade, porém, criou-se muito mais matéria do que antimatéria.
Um momento de dipolo elétrico do elétron poderia explicar este desequilíbrio.
Até agora, porém, ninguém conseguiu provas da existência deste suposto momento de dipolo, eventualmente porque as técnicas atuais simplesmente não são sensíveis o suficiente.
Mas um pequeno pedaço de cerâmica está para mudar toda essa história. Marjana Lezaic e Konstantin Rushchanskii, da Universidade da Califórnia em Santa Barbara, nos Estados Unidos, projetaram essa cerâmica simulando o comportamento quântico dos átomos em um supercomputador.
A cerâmica é o titanato de bário-európio (Eu0.5Ba0.5TiO3), que tem algumas propriedades muito especiais, permitindo a realização de medições 10 vezes mais sensíveis do que foi feito até hoje. Isto deverá ser suficiente para localizar o momento de dipolo elétrico do elétron.
A ideia é usar um magnetômetro SQUID, o sensor magnético mais sensível já construído, para medir a magnetização do pedaço de cerâmica quando ele for submetido a um campo elétrico.
Como um momento elétrico não pode ser medido diretamente, os cientistas esperam demonstrar uma mudança na magnetização quando o campo elétrico é invertido. Isto seria um indício da existência do elusivo momento do dipolo elétrico.
reversão de dipolo do elétron
© Nature Materials (reversão de dipolo do elétron)
Se o campo elétrico for invertido, os momentos de dipolo dos elétrons serão revertidos, levando, consequentemente, a uma mudança simultânea mensurável na magnetização.
Em um elétron, um dipolo elétrico só pode ser orientado paralelamente ou antiparalelamente ao spin do elétron. Em um campo elétrico, a maioria dos elétrons são orientados de tal forma que seu momento dipolo é paralelo ao campo. Poucos são orientados na outra direção.
Isso deve levar a uma magnetização mensurável. Se o campo elétrico for invertido, os momentos de dipolo dos elétrons serão revertidos, levando, consequentemente, a uma mudança simultânea mensurável na magnetização.
Se não existir um momento de dipolo elétrico, a magnetização deverá permanecer inalterada.
Uma equipe da Universidade de Praga, na República Tcheca, já sintetizou e caracterizou o material em laboratório, confirmando as propriedades calculadas pelos colegas norte-americanos.
Mas o cobiçado momento de medir o dipolo do elétron ainda não chegou. "Efeitos indesejados ainda estão inibindo as medições," conta Lezaic, sem esconder a decepção. "Mas estamos trabalhando intensamente na melhoria do material."
Fonte: Nature Materials